L% DataNucleus

JDO Query Guide (v5.2)

Table of Contents

Query API
Creating a query
Closing a query
Named Query
Query Extensions
Setting query parameters
Compiling a query
Executing a query
Controlling the execution : FetchPlan
ignoreCache(), setignoreCache()
Control over locking of fetched objects
Timeout on query execution for reads
Timeout on query execution for writes
Extension: Loading Large Result Sets at Commit()
Extension: Caching of Results
Extension: Size of Large Result Sets
Extension: Type of Result Set (RDBMS)
Extension: Result Set Control (RDBMS)
JDOQL
JDOQL Single-String syntax
Candidate Class
Filter
Fields/Properties
Methods
Literals
Parameters
Variables
Imports
IF ELSE expressions
Operators
instanceof
casting
Subqueries
Result clause
Result Class
Grouping of Results
Ordering of Results
Range of Results

© © © 3 O O OO U1 W W N DN

BB R R R R R WW W W W W R R e e e e e e e e e
D OO U R WO O O © O 0 NN Ul Ul oUW W R, R, O O o o

JDOQL In-Memory queries
Update/Delete queries

Deletion by Query

Bulk Delete

Bulk Update

JDOQL Strictness

JDOQL : SQL Generation for RDBMS

JDOQL Typed

Preparation

Query Classes

Query API - Filtering
Query API - Ordering
Query API - Methods
Query API - Results
Query API - Parameters
Query API - Variables
Query API - If-Then-Else
Query API - Subqueries
Query API - Candidates

SQL

Setting candidate class
Unique results

Defining a result type

SQL Syntax Checks
Inserting/Updating/Deleting

Parameters

Example 1 - Using SQL aggregate functions, without candidate class
Example 2 - Using SQL aggregate functions, with result class
Example 3 - Retrieval using candidate class

Example 4 - Using parameters, without candidate class

Example 5 - Named Query

Cassandra CQL
JPQL

Entity Name
Fetched Fields

Stored Procedures
Using DataNucleus Stored Procedure API

Using JDO SQL Query API to invoke stored procedures
Query Cache

Generic Query Compilation Cache

Datastore Query Compilation Cache

47
48
48
48
48
49
49
50
50
51
52
53
53
35
35
56
56
57
57
39
59
60
60
61
61
62
62
63
63
64
64
66
67
67
67
68
68
69
70
70
70

Query Results Cache

71

Once you have persisted objects you need to query them. For example if you
have a web application representing an online store, the user asks to see all
products of a particular type, ordered by the price. This requires you to query
the datastore for these products. JDO specifies support for

* JDOQL : a string-based query language using Java syntax.

Typed : following JDOQL syntax but providing an API supporting refactoring of classes and the
queries they are used in.

* SQL : typically only for RDBMS

JPQL : not explicitly part of the JDO spec, but provided by DataNucleus JDO.

* Stored Procedures : not explicitly part of the JDO spec, but provided by DataNucleus JDO as an
option for RDBMS.

Which query language is used is down to the developer. The data-tier of an application could be
written by a primarily Java developer, who would typically think in an object-oriented way and so
would likely prefer JDOQL. On the other hand the data-tier could be written by a datastore
developer who is more familiar with SQL concepts and so could easily make more use of SQL. This
is the power of an implementation like DataNucleus in that it provides the flexibility for different
people to develop the data-tier utilising their own skills to the full without having to learn totally
new concepts.

We recommend using JDOQL for queries wherever possible since it is object-based
O and datastore agnostic, giving you extra flexibility in the future. If not possible
et using JDOQL, only then use a language appropriate to the datastore in question

o For some datastores additional query languages may be available specific to that
datastore - please check the datastores documentation.

There are 2 categories of queries with JDO :-

* Programmatic Query where the query is defined using the JDO Query APIL

* Named Query where the query is defined in MetaData and referred to by its name at runtime.

#jdoql
#jdoql_typed
#sql
#jpql
#stored_procedures
../datastores/datastores.html
query.html#api
query.html#named

Query API

Let’s now try to understand the Query API in JDO. We firstly need to look at a typical Query.

Let’s create a JDOQL string-based query to highlight its usage

Query q = pm.newQuery("SELECT FROM mydomain.Product p WHERE p.price <= :threshold
ORDER BY p.price ASC");
List results = q.execute(my_threshold);

In this Query, we implicitly select JDOQL by just passing in a query string to the method
PersistenceManager.newQuery(String), and the query is specified to return all objects of type
Product (or subclasses) which have the price less than or equal to some threshold value and
ordering the results by the price. We’ve specified the query like this because we want to pass the
threshold value in as a parameter (so maybe running it once with one value, and once with a
different value). We then set the parameter value of our threshold parameter. The Query is then
executed to return a List of results. The example is to highlight the typical methods specified for a
(JDOQL) string-based Query.

Creating a query

The principal ways of creating a query are

» Specifying the query language, and using a single-string form of the query

Query q = pm.newQuery("javax.jdo.query.JDOQL",
"SELECT FROM mydomain.MyClass WHERE field2 < threshold PARAMETERS java.util.Date
threshold");

or alternatively
Query q = pm.newQuery("SQL", "SELECT * FROM MYTABLE WHERE COL1 == 25);
* A'"named" query, (pre-)defined in metadata (refer to metadata docs).
Query<MyClass> q = pm.newNamedQuery(MyClass.class, "MyQuery1");
* JDOQL : Use the single-string form of the query

Query q = pm.newQuery("SELECT FROM mydomain.MyClass WHERE field2 < threshold
PARAMETERS java.util.Date threshold");

* JDOQL : Use the declarative API to define the query

http://www.datanucleus.org/javadocs/javax.jdo/3.2/javax/jdo/Query.html
query.html#named
query.html#jdoql
query.html#jdoql

Query<MyClass> q = pm.newQuery(MyClass.class);
q.setFilter("field2 < threshold");
q.declareParameters("java.util.Date threshold");

* JDOQL : Use the Typed Query API to define the query

JDOQLTypedQuery<MyClass> q = pm.new]DOQLTypedQuery(MyClass.class);
QMyClass cand = QMyClass.candidate();

List<Product> results =
q.filter(cand.field2.1t(q.doubleParameter("threshold"))).executelist();

Closing a query

When a query is executed it will have access to the results of that query. Each time it is executed
(maybe with different parameters) it will have separate results. This can consume significant
resources if the query returned a lot of records.

You close a query (and all query results) like this
g.close();

If you just wanted to close a specific query result you would call
g.close(queryResult);

where the queryResult is what you were returned from executing the query.

Named Query

With the JDO query API you can either define a query at runtime, or define it in the
MetaData/annotations for a class and refer to it at runtime using a symbolic name. This second
option means that the method of invoking the query at runtime is much simplified. To demonstrate
the process, lets say we have a class called Product (something to sell in a store). We define the JDO
Meta-Data for the class in the normal way, but we also have some query that we know we will
require, so we define the following in the Meta-Data.

query.html#jdoql_typed

<package name="mydomain">
<class name="Product">

<query name="SoldOut" lanquage="javax.jdo.query.JDOQL"><![CDATA[
SELECT FROM mydomain.Product WHERE status == "Sold Out"
11></query>
</class>
</package>

So we have a JDOQL query called "SoldOut" defined for the class Product that returns all Products
(and subclasses) that have a status of "Sold Out". Out of interest, what we would then do in our
application to execute this query woule be

Query<Product> q = pm.newNamedQuery(mydomain.Product.class,"SoldOut");
List<Product> results = q.executelist();

The above example was for the JDOQL object-based query language. We can do a similar thing
using SQL, so we define the following in our MetaData for our Product class

<jdo>
<package name="mydomain">
<class name="Product">

<query name="PriceBelowValue" language="javax.jdo.query.SQL"><![CDATA[
SELECT NAME FROM PRODUCT WHERE PRICE < ?
11></query>
</class>
</package>
</jdo>

So here we have an SQL query that will return the names of all Products that have a price less than
a specified value. This leaves us the flexibility to specify the value at runtime. So here we run our
named query, asking for the names of all Products with price below 20 euros.

Query<Product> q = pm.newNamedQuery(mydomain.Product.class, "PriceBelowValue");
q.setParameters(20.9);
List<Product> results = g.executelist();

All of the examples above have been specifed within the <class> element of the MetaData. You can,
however, specify queries below <jdo> in which case the query is not scoped by a particular
candidate class. In this case you must put your queries in any of the following MetaData files

/META-INF/package.jdo
/WEB-INF/package. jdo
/package. jdo
/META-INF/package-{mapping}.orm
/WEB-INF/package-{mapping}.orm
/package-{mapping}.orm
/META-INF/package.jdoquery
/WEB-INF/package.jdoquery
/package.jdoquery

Saving a Query as a Named Query

DataNucleus JDO also allows you to create a query, and then save it as a "named" query for later
reuse. You do this as follows

Query q = pm.newQuery("SELECT FROM Product p WHERE ...");
q.saveAsNamedQuery("MyQuery");

and you can thereafter access the query via

Query q = pm.newNamedQuery(Product.class, "MyQuery");

Query Extensions

The JDO query API allows implementations to support "extensions" and provides a simple interface
for enabling the use of such extensions on queries. An extension specifies additional information to
the query mechanism about how to perform the query. Individual extensions will be explained
later in this guide.

You set an extension like this

g.extension("extension_name", value);

Map exts = new HashMap();
exts.put("extension1", valuel);
exts.put("extension2", value2);
g.extensions(exts);

With DataNucleus, all extension names will begin with "datanucleus.".

The Query API also has methods setExtensions and addExtension that are from the original version
of the AP, but function the same as these methods quoted.

Setting query parameters

Queries can be made flexible and reusable by defining parameters as part of the query, so that we
can execute the same query with different sets of parameters and minimise resources.

// 1D0QL Using named parameters

Query<Product> q = pm.newQuery(Product.class);
q.setFilter("this.name == :name && this.serialNo == :serial");
Map params = new HashMap();

params.put("name", "Walkman");

params.put("serial", "123021");
q.setNamedParameters(params);

// 1D0QL Using numbered parameters
Query<Product> q = pm.newQuery(Product.class);
q.setFilter("this.name == ?1 && this.serialNo == 72");

q.setParameters("Walkman", "123021");

Alternatively you can specify the query parameters in the execute method call.

Compiling a query

An intermediate step once you have your query defined, if you want to check its validity, is to
compile it. You do this as follows

q.compile();
If the query is invalid, then a JDOException will be thrown.

Executing a query

So we have set up our query. We now execute it. We have various methods to do this, depending on
what result we are expecting etc

// Simple execute
Object result = q.execute();

// Execute with 1 parameter passed in
Object result = q.execute(paramVall);

// Execute with multiple parameters passed in
Object result = q.execute(paramVall, paramVall);

// Execute with an array of parameters passed in (positions match the query parameter
position)
Object result = q.executeWithArray(new Object[]{paramVall, paramVal2});

// Execute with a map of parameters keyed by their name in the query
Object result = q.executeWithMap(paramMap);

// Execute knowing we want to receive a list of results
List results = q.executelist();

// Execute knowing there is 1 result row
Object result = q.executeUnique();

// Execute where we want a list of results and want each result row of a particular

type
List<ResultClass> results = q.executeResultList(ResultClass.class);

// Execute where we want a single result and want the result row of a particular type
ResultClass result = g.executeResultUnique(ResultClass.class);

Extension : Flush before query execution

- .
=== Extension

When using optimistic transactions all updates to persistent objects are held until flush()/commit().
This means that executing a query may not take into account changes made during that transaction
in some objects. DataNucleus allows an extension for calling flush() just before execution of queries
so that all updates are taken into account. You could specify this as a persistence property
datanucleus.query.flushBeforeExecution (defaults to false) and it will apply to all queries.
Alternatively, to do this on a per query basis you would do

query.extension("datanucleus.query.flushBeforeExecution","true");

Controlling the execution : FetchPlan

When a Query is executed it executes in the datastore, which returns a set of results. DataNucleus
could clearly read all results from this ResultSet in one go and return them all to the user, or could

allow control over this fetching process. JDO provides a fetch size on the Fetch Plan to allow this
control. You would set this as follows

Query q = pm.newQuery(...);
q.getFetchPlan().setFetchSize(FetchPlan.FETCH_SIZE_OPTIMAL);

fetch size has 3 possible values.

 FETCH_SIZE_OPTIMAL - allows DataNucleus full control over the fetching. In this case
DataNucleus will fetch each object when they are requested, and then when the owning
transaction is committed will retrieve all remaining rows (so that the Query is still usable after
the close of the transaction).

* FETCH_SIZE_GREEDY - DataNucleus will read all objects in at query execution. This can be
efficient for queries with few results, and very inefficient for queries returning large result sets.

* A positive value - DataNucleus will read this number of objects at query execution. Thereafter
it will read the objects when requested.

In addition to the number of objects fetched, you can also control which fields are fetched for each
object of the candidate type. This is controlled via the FetchPlan.

For RDBMS any single-valued member will be fetched in the original SQL query, but with multiple-
valued members this is not supported. However what will happen is that any collection/array field
will be retrieved in a single SQL query for all candidate objects (by default using an EXISTS
subquery); this avoids the "N+1" problem, resulting in 1 original SQL query plus 1 SQL query per
collection member. Note that you can disable this by either not putting multi-valued fields in the
FetchPlan, or by setting the query extension datanucleus.rdbms.query.multivaluedFetch to none
(default is "exists" using the single SQL per field).

For non-RDBMS datastores the collection/map is stored by way of a Collection of ids of the related
objects in a single "column" of the object and so is retrievable in the same query. See also Fetch
Groups.

Extension: Load results at commit
4 .
== Extension

DataNucleus also allows an extension to give further control. As mentioned above, when the
transaction containing the Query is committed, all remaining results are read so that they can then
be accessed later (meaning that the query is still usable). Where you have a large result set and you
don’t want this behaviour you can turn it off by specifying a Query extension

g.extension("datanucleus.query.loadResultsAtCommit", "false");

so when the transaction is committed, no more results will be available from the query.

persistence.html#fetch_groups
persistence.html#fetch_groups
persistence.html#fetch_groups

Extension: Ignore FetchPlan

a .
== Extension

In some situations you don’t want all FetchPlan fields retrieving, and DataNucleus provides an
extension to turn this off, like this

g.extension("datanucleus.query.useFetchPlan", "false");

ignoreCache(), setignoreCache()

The ignoreCache option setting specifies whether the query should execute entirely in the back end,
instead of in the cache. If this flag is set to true, DataNucleus may be able to optimize the query
execution by ignoring changed values in the cache. For optimistic transactions, this can
dramatically improve query response times.

q.ignoreCache(true);

Control over locking of fetched objects

JDO allows control over whether objects found by a query are locked during that transaction so that
other transactions can’t update them in the meantime. To do this you would do

Query q = pm.newQuery(...);
q.serializeRead(true);

You can also specify this for all queries for all PMs using the persistence property
datanucleus.SerializeRead. In addition you can perform this on a per-transaction basis by doing

tx.setSerializeRead(true);
0 If the datastore in use doesn’t support locking of objects then this will do nothing
Timeout on query execution for reads

q.datastoreReadTimeoutMillis(1000);

Sets the timeout for this query (in milliseconds). Will throw a JDOUnsupportedOperationException if
the query implementation doesn’t support timeouts (for the current datastore).

Timeout on query execution for writes
q.datastoreWriteTimeoutMillis(1000);

Sets the timeout for this query (in milliseconds) when it is a delete/update. Will throw a
JDOUnsupportedOperationException if the query implementation doesn’t support timeouts (for the
current datastore).

Extension: Loading Large Result Sets at Commit()
E Extension

When a transaction is committed by default all remaining results for a query are loaded so that the
query is usable thereafter. With a large result set you clearly don’t want this to happen. So in this
case you should set the extension datanucleus.query.loadResultsAtCommit to false.

To do this on a per query basis you would do

query.addExtension("datanucleus.query.loadResultsAtCommit", "false");

Extension: Caching of Results
E Extension

When you execute a query, the query results are typically loaded when the user accesses each row.
Results that have been read can then be cached locally. You can control this caching to optimise it
for your memory requirements. You can set the query extension
datanucleus.query.resultCacheType and it has the following possible values

* weak : use a weak reference map for caching (default)
* soft : use a soft reference map for caching
* hard : use a Map for caching (objects not garbage collected)

* none : no caching (hence uses least memory)

To do this on a per query basis, you would do

query.addExtension("datanucleus.query.resultCacheType", "weak");

Extension: Size of Large Result Sets

i .
== Extension

10

If you have a large result set you clearly don’t want to instantiate all objects since this would hit the
memory footprint of your application. To get the number of results many JDBC drivers, for
example, will load all rows of the result set. This is to be avoided so DataNucleus provides control
over the mechanism for getting the size of results. The persistence property
datanucleus.query.resultSizeMethod has a default of last (which means navigate to the last
object, hence hitting the JDBC driver problem). On RDBMS, if you set this to count then it will use a
simple "count()" query to get the size.

To do this on a per query basis you would do

query.addExtension("datanucleus.query.resultSizeMethod", "count");

Extension: Type of Result Set (RDBMS)

a .
= Extension

For RDBMS datastores, java.sql.ResultSet defines three possible result set types.

* forward-only : the result set is navegable forwards only

* scroll-sensitive : the result set is scrollable in both directions and is sensitive to changes in the
datastore

* scroll-insensitive : the result set is scrollable in both directions and is insensitive to changes in
the datastore

DataNucleus allows specification of this type as a query extension
datanucleus.rdbms.query.resultSetType.

To do this on a per query basis you would do
query.addExtension("datanucleus.rdbms.query.resultSetType", "scroll-insensitive");

The default is forward-only. The benefit of the other two is that the result set will be scrollable and
hence objects will only be read in to memory when accessed. So if you have a large result set you
should set this to one of the scrollable values.

Extension: Result Set Control (RDBMS)

. .
== Extension

DataNucleus RDBMS provides a useful extension allowing control over the ResultSet’s that are
created by queries. Some properties are available that give you the power to control whether the
result set is read only, whether it can be read forward only, the direction of fetching etc.

To do this on a per query basis you would do

11

query.addExtension("datanucleus.rdbms.query.fetchDirection", "forward");
query.addExtension("datanucleus.rdbms.query.resultSetConcurrency”, "read-only");

Alternatively you can specify these as persistence properties so that they apply to all queries for
that PMF. Again, the properties are

* datanucleus.rdbms.query.fetchDirection - controls the direction that the ResultSet is
navigated. By default this is forwards only. Use this property to change that.

* datanucleus.rdbms.query.resultSetConcurrency - controls whether the ResultSet is read only
or updateable.

Bear in mind that not all RDBMS support all of the possible values for these options. That said, they
do add a degree of control that is often useful.

12

JDOQL

JDO provides its own object-based query language (JDOQL), designed to have the power of SQL
queries, yet retaining the Java object relationship that exist in the developers application model.

A JDOQL query may be created in several ways. Here’s an example expressed in the 3 supported
ways

// String-based JDOQL :

Query q = pm.newQuery("SELECT FROM mydomain.Person WHERE lastName == 'Jones' && age <
age_limit PARAMETERS int age_limit");

List<Person> results = (List<Person>)q.execute(20);

// Declarative JDOQL :

Query q = pm.newQuery(Person.class);
q.setFilter("lastName == 'Jones' &% age < age_limit");
q.declareParameters("int age_limit");

List<Person> results = q.setParameters(20).executelist();

// Typed JDOQL :
JDOQLTypedQuery<Person> tq = pm.new]DOQLTypedQuery(Person.class);
QPerson cand = QPerson.candidate();
List<Person> results =
tq.filter(cand.lastName.eq("Jones").and(cand.age.1t(tq.intParameter(
"age_limit"))))
.setParameter("age_limit", "20").executelist();

So here in our example we select all "Person" objects with surname of "Jones" and where the
persons age is below 20. The language is intuitive for Java developers, and is intended as their
interface to accessing the persisted data model. As can be seen above, the query is made up of
distinct parts: the class being processed (equates to the FROM clause in SQL), the data being
selected (the SELECT clause in SQL), the filter (the WHERE clause in SQL), together with any sorting
(the ORDER BY clause in SQL), etc.

We will cover the string-based and declarative modes of JDOQL API in this chapter, and the Typed
JDOQL is covered in its own chapter.

When using RDBMS all parts of a query are evaluated in-datastore. When using
LDAP, Excel, ODF, XML, JSON, GoogleStorage, AmazonS3 any query filter/ordering

o etc is evaluated in-memory. When using Neo4j, HBase, MongoDB and Cassandra
any query filter/ordering etc are evaluated in-datastore where possible, with the
remainder evaluated in-memory.

JDOQL Single-String syntax

JDOQL queries can be defined in a single-string form, as follows

13

query.html#jdoql_typed

SELECT [UNIQUE] [<result>] [INTO <result-class>]
[FROM <candidate-class> [EXCLUDE SUBCLASSES]]
[WHERE <filter>]
[VARIABLES <variable declarations>]
[PARAMETERS <parameter declarations>]
[<import declarations>]
[GROUP BY <grouping>]
[ORDER BY <ordering>]
[RANGE <start>, <end>]

The "keywords" in the query are shown in UPPER CASE but can be in UPPER or lower case (but not
MiXeD case). So giving an example

SELECT UNIQUE FROM mydomain.Employee ORDER BY departmentNumber

Candidate Class

By default the candidate "class" with JDOQL has to be a persistable class. This can then be referred
to in the query using the this keyword (just like in Java). Also by default your query will return
instances of subclasses of the candidate class. You can restrict to just instances of the candidate by
specifying to exclude subclasses (see EXCLUDE SUBCLASSES in the string-based syntax, or by
setSubclasses(false) when using the declarative API).

o The "candidate" has an implicit "alias" in JDOQL, which is this (just like in Java). So
in the rest of the query you can refer to a field of the candidate as this.{fieldName}

If the candidate has a table using a discriminator, the generated SQL for RDBMS
will include a restriction of the possible discriminator values to the candidate and
o any applicable subclasses. If you want to override this and NOT have a
discriminator restriction imposed in the SQL then you provide the query extension
datanucleus.query.dontRestrictDiscriminator set to true.

Candidate Persistent Interface

' .
== Extension

DataNucleus also allows you to specify a candidate class as persistent interface. This is used where
we want to query for instances of implementations of the interface. Let’s take an example. We have
an interface, and some implementations

14

@PersistenceCapable
public interface ComputerPeripheral

{
@PrimaryKey
long getId();
void setId(long val);

@Persistent
String getManufacturer();
void setManufacturer(String name);

@Persistent
String getModel();
void setModel(String name);

}

@PersistenceCapable
public class Mouse implements ComputerPeripheral {...}

@PersistenceCapable
public class Keyboard implements ComputerPeripheral {...}

So we have made our interface persistable, and defined the identity property(ies) there. The
implementations of the interface will use the identity defined in the interface. To query it we
simply do

Query q = pm.newQuery(ComputerPeripheral.class);
List<ComputerPeripheral> results = g.executelist();

The key rules are

* You must define the interface as persistent
* The interface must define the identity/primary key member(s)

* The implementations must have the same definition of identity and primary key

Filter

The most important thing to remember when defining the filter for JDOQL is that think how you
would write it in Java, and its likely the same. The filter has to be a boolean expression, and can
include the candidate, fields/properties, literals, methods, parameters, variables, operators,
instanceof, subqueries and casts.

With the Declarative API you would define the filter using the Query.filter method, like this

q.filter("this.inventory.name == 'MyInventory'");

15

#jdoql_candidate
#jdoql_fields_properties
#jdoql_literals
#jdoql_methods
#jdoql_parameters
#jdoql_variables
#jdoql_operators
#jdoql_instanceof
#jdoql_subqueries
#jdoql_casts

Fields/Properties

In JDOQL you refer to fields/properties in the query by referring to the field/bean name. For
example, if you are querying a candidate class called Product and it has a field "price", then you
access it like this

price < 150.0

Note that, just like in Java, if you want to refer to a field/property of the candidate you can prefix
the field by its implicit alias this

this.price < 150.0

You can also chain field references, so if you have a candidate class Product with a field of
(persistable) type Inventory, which has a field name, then you could do

this.inventory.name == 'Backup’

In addition to the persistent fields, you can also access "public static final" fields of any class. You
can do this as follows

taxPercent < mydomain.Product.TAX_BAND_A

So this will find all products that include a tax percentage less than some "BAND A" level. Where
you are using "public static final" fields you can either fully-qualify the class name or you can
include it in the "imports" section of the query (see later).

o With JDOQL you do not do explicit joins. You instead use the fields/properties and
navigate to the object you want to make use of in your query

With 1-1/N-1 relations this is simply a reference to the field/property, and place some restriction on
it, like this

this.inventory.name == 'MyInventory'
With 1-N/M-N relations you would introduce a JDOQL variable and use something like
containerField.contains(elemVar)

and thereafter refer to elemVar for the element in the collection to place restrictions on the
element. Similarly you can use elemVar in the result clause

16

#jdoql_variables

. .
== Extension

RDBMS : By default when you navigate through a 1-1/N-1 relation in JDOQL DataNucleus will
decide to join using either LEFT OUTER JOIN or INNER JOIN based on whether the relation is
nullable. If it is nullable then LEFT OUTER JOIN will be used. You can change this default by
specifying the persistence property (to apply to all queries) or query extension
datanucleus.query.jdoql.navigationJoinType and set it to either "INNERJOIN" or
"LEFTOUTERJOIN". You can also set the default for the filter only using the persistence property(to
apply to all queries) or query extension datanucleus.query.jdoql.navigationJoinTypeForFilter
and set it to either "INNERJOIN" or "LEFTOUTER]JOIN".

Methods

When writing the "filter" for a JDOQL Query you can make use of some methods on the various Java
types. The range of methods included as standard in JDOQL is not as flexible as with the true Java
types, but the ones that are available are typically of much use. While DataNucleus supports all of
the methods in the JDO standard, it also supports several yet to be standardised (extension) method.
The tables below also mark whether a particular method is supported for evaluation in-memory.

These methods are not available for use with all of the supported datastores to be
o executed in-datastore. RDBMS, in general, supports the vast majority, whilst
MongoDB, Neo4j, Cassandra support a select few methods in-datastore.

o You can add "in-memory" evaluation support for other methods using this
- .t ;
w— Cxtension
= Point

0 You can add "RDBMS datastore"” support for other methods wusing this
- i
= Extension

Point
String Methods
Method Description Stand In-
ard Memo

ry

startsWith(String) Returns if the string starts with the passed string v v

startsWith(String, int) Returns if the string starts with the passed string, from the Vv v

passed position
endsWith(String) Returns if the string ends with the passed string v v
indexOf(String) Returns the first position of the passed string v v

indexOf(String,int) Returns the position of the passed string, after the passed v v
position

substring(int) Returns the substring starting from the passed position v v

17

#jdoql_inmemory
../extensions/extensions.html#query_method_evaluators
../extensions/extensions.html#rdbms_sql_method

Method Description Stand In-
ard Memo

ry

substring(int,int) Returns the substring between the passed positions v v
toLowerCase() Returns the string in lowercase v v
toUpperCase() Retuns the string in UPPERCASE v v
matches(String Returns whether string matches the passed expression. The Vv v
pattern) pattern argument follows the rules of

java.lang.String.matches method. Only the following regular

expression patterns are required to be supported and are

portable: global “(?1)” for case-insensitive matches; and «.”

and “.*” for wild card matches. The pattern passed to

matches must be a literal or parameter.
charAt(int) Returns the character at the passed position v v
length() Returns the length of the string v v
trim() Returns a trimmed version of the string v v
concat(String) Concatenates the current string and the passed string X v
equals(String) Returns if the strings are equal X v
equalsignoreCase(Stri Returns if the strings are equal ignoring case X v
ng)
replaceAll(String, Returns the string with all instances of str1 replaced by str2 X X
String)
trimLeft() Returns a trimmed version of the string (trimmed for X v

leading spaces). Only on RDBMS, Neo4j
trimRight() Returns a trimmed version of the string (trimmed for X v

trailing spaces). Only on RDBMS, Neo4;j

Here’s an example using a Product class, looking for objects which their abbreviation is the
beginning of a trade name. The trade name is provided as parameter.

Declarative JDOQL :

Query query = pm.newQuery(Product.class);
query.setFilter(":tradeName.startsWith(this.abbreviation)");

List<Product> results = query.setParameters("Workbook Advanced").executelist();

Single-String JDOQL :

Query query = pm.newQuery("SELECT FROM mydomain.Product WHERE
:tradeName.startsWith(this.abbreviation)");

List results = (List)query.execute("Workbook Advanced");

18

Collection Methods

Method Description Stand In-
ard Memo

ry
iSEmpty() Returns whether the collection is empty v v
contains(value) Returns whether the collection contains the passed element Vv v
size() Returns the number of elements in the collection v v
get(int) Returns the element at that position of the List v v
indexOf(elem) Returns the position in the List of the element. X v

Here’s an example demonstrating use of contains(). We have an Inventory class that has a
Collection of Product objects, and we want to find the Inventory objects with 2 particular Products
in it. Here we make use of a variable (prd to represent the Product being contained

Declarative JDOQL :

Query query = pm.newQuery(Inventory.class);
query.setFilter("products.contains(prd) && (prd.name=='product 1' ||
prd.name=="product 2')");

List<Inventory> results = query.executelist();

Single-String JDOQL:
Query query = pm.newQuery("SELECT FROM mydomain.Inventory " +

"WHERE products.contains(prd) && (prd.name=="product 1' || prd.name=="product
2)");

List results = (List)query.execute();

Map Methods

Method Description Stand In-
ard Memo

isEmpty() Returns whether the map is empty

containsKey(key) Returns whether the map contains the passed key

containsValue(value) Returns whether the map contains the passed value
get(key) Returns the value from the map with the passed key

size() Returns the number of entries in the map

X <X
X L K K 3s

containsEntry(key, Returns whether the map contains the passed entry
value)

Here’s an example using a Product class as a value in a Map. Our example represents an

organisation that has several Inventories of products. Each Inventory of products is stored using a
Map, keyed by the Product name. The query searches for all Inventories that contain a product with

19

the name "product 1".

Declarative 1DOQL :

Query query = pm.newQuery(mydomain.Inventory.class, "products.containsKey('product
1!)"),.

List<Inventory> results = query.execute();

Single-String JDOQL :

Query query = pm.newQuery("SELECT FROM mydomain.Inventory WHERE

products.containsKey('product 1')");
List results = (List)query.execute();

Here’s the source code for reference

class Inventory

{
Map<String, Product> products;
¥
class Product
{
}

java.util.Date Temporal Methods

Method Description Stand In-
ard Memo

ry

getDate() Returns the day (of the month) for the date (java.util.Date Vv v

types) in the timezone it was stored

getMonth() Returns the month for the date (java.util.Date types) (0-11) Vv v
in the timezone it was stored

getYear() Returns the year for the date (java.util.Date types) in the v v
timezone it was stored

getHour() Returns the hour for the time (java.util.Date types) in the v v
timezone it was stored

getMinute() Returns the minute for the time (java.util.Date types) in the V' v
timezone it was stored

getSecond() Returns the second for the time (java.util.Date types) in the V' v
timezone it was stored

getDayOfWeek() Returns the day of the week for the date (java.util.Date v v
types) (1-7) in the timezone it was stored

20

java.time Temporal Methods

Class

LocalDate

LocalDate

LocalDate

LocalDate

LocalDateTime

LocalDateTime

LocalDateTime

LocalDateTime

LocalDateTime

LocalDateTime

LocalDateTime

LocalTime

LocalTime

LocalTime

MonthDay
MonthDay
Period
Period
Period

YearMonth

Method

Description

getDayOfMonth() Returns the day (of the month) for the date (1-

getDayOfWeek()

getMonthValue()

getYear()

getDayOfMonth()

getDayOfWeek()

getMonthValue()

getYear()

getHour()

getMinute()

getSecond()

getHour()

getMinute()

getSecond()

getMonthValue()
getDayOfMonth()

getDays()
getMonths()

getYears()

31) in the timezone it was stored

Returns the day of the week for the date (1-7) in
the timezone it was stored

Returns the month for the date (1-12) in the
timezone it was stored

Returns the year for the date in the timezone it
was stored

Returns the day (of the month) for the date in
the timezone it was stored

Returns the day of the week for the date (1-7) in
the timezone it was stored

Returns the month for the date (1-12) in the
timezone it was stored

Returns the year for the date in the timezone it
was stored

Returns the hour for the time in the timezone it
was stored

Returns the minute for the time in the timezone
it was stored

Returns the second for the time in the timezone
it was stored

Returns the hour for the time in the timezone it
was stored

Returns the minute for the time in the timezone
it was stored

Returns the second for the time in the timezone
it was stored

Returns the month (1-12)

Returns the day of the month (1-31)
Returns the number of days
Returns the number of months

Returns the number of years

getMonthValue() Returns the month

Stan In-
dard Me
mor
y
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v

21

Class Method Description Stan In-
dard Me
mor
y
YearMonth getYear() Returns the year v v
Jodatime Temporal Methods
Class Method Description Stan In-
dard Me
mor
y
Interval getStart() Returns the start of an Interval v
Interval getEnd() Returns the end of an Interval v
Enum Methods
Method Description Stand In-
ard Memo
ry
ordinal() Returns the ordinal of the enum (not implemented for enum v v
expression when persisted as a string)
toString() Returns the string form of the enum (not implemented for v
enum expression when persisted as a numeric)
Other Methods
Class Method Description Stan In-
dard Me
mor
y
{ length Returns the length of an array. Only on RDBMS
{ contains(object) Returns true if the array contains the object. X
Only on RDBMS
java.util.Optional isPresent() Returns whether the value is present in this vV v
optional.
java.util.Optional get() Returns the delegated object v v
v Vv

java.util.Optional orElse(object) Returns the value of the optional if present,

otherwise the supplied object.

Static Methods

22

Method

Math.abs(number)
Math.sqrt(number)
Math.cos(number)
Math.sin(number)
Math.tan(number)
Math.acos(number)
Math.asin(number)
Math.atan(number)
Math.ceil(number)
Math.exp(number)
Math.floor(number)
Math.log(number)
Math.round(number)

Math.toDegrees(num
ber)

Math.toRadians(num
ber)

Math.power(number,
power)

JDOHelper.getObjectl
d(object)

JDOHelper.getVersion
(object)
SQL_rollup({object})

SQL_cube({object})

SQL_boolean({sql})

Description

Returns the absolute value of the passed number
Returns the square root of the passed number
Returns the cosine of the passed number
Returns the absolute value of the passed number
Returns the tangent of the passed number
Returns the arc cosine of the passed number
Returns the arc sine of the passed number
Returns the arc tangent of the passed number
Returns the ceiling of the passed number
Returns the exponent of the passed number
Returns the floor of the passed number

Returns the log(base e) of the passed number
Returns the rounded value of the passed number

Returns the degrees of the passed radians value

Returns the radians of the passed degrees value

Returns the passed number to the specified power

Returns the object identity of the passed persistent object

Returns the version of the passed persistent object

Perform a rollup operation over the results. Only for some

RDBMS e.g DB2, MSSQL, Oracle

Perform a cube operation over the results. Only for some

RDBMS e.g DB2, MSSQL, Oracle

Embed the provided SQL and return a boolean result. Only

Stand In-
ard Memo
ry
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
v v
X X
X v
X v
X X
v v
v v
X X
X X
X X

on RDBMS

SQL_numeric({sql}) Embed the provided SQL and return a numeric result. Only X
on RDBMS

Geospatial Methods

In terms of geospatial types that are part of the JRE

23

Class Method Description Stan In-

dard Me
mor
y
java.awt.Point getX() Returns the X coordinate. Only on RDBMS X v
java.awt.Point getY() Returns the Y coordinate. Only on RDBMS X v
java.awt.Rectangl getX() Returns the X coordinate. Only on RDBMS X v
e
java.awt.Rectangl getY() Returns the Y coordinate. Only on RDBMS X v
e
java.awt.Rectangl getWidth() Returns the width. Only on RDBMS X v
e
java.awt.Rectangl getHeight() Returns the height. Only on RDBMS X v
e

In terms of geospatial types that are provided by more specialised libraries, such as JTS, the
following applies.

a4 .
=== Extension

When querying spatial data you can make use of a set of spatial methods on the various Java
geometry types. The list contains all of the methods detailed in Section 3.2 of the OGC Simple
Features specification. Additionally DataNucleus provides some commonly required methods like
bounding box test and datastore-specific methods. The following tables list all available methods as
well as information about which RDBMS implement them. An entry in the "Result” column
indicates, whether the function may be used in the result part of a JDOQL query.

Methods on Type Geometry (OGC SF 3.2.10)

Method Description Res Pos My Or
ult tGI SQ acl
S L e
Sp
ati
al
getDimension() Returns the dimension of the Geometry. v v v
getGeometryType() Returns the name of the instantiable subtype ¢ v VvV
of Geometry.
getSRID() Returns the Spatial Reference SystemIDfor v Vv v
this Geometry.
iSEmpty() TRUE if this Geometry corresponds to the 1 v v V
empty set. [1]

24

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

Method Description

isSimple() TRUE if this Geometry is simple, as defined in

the Geometry Model.

getBoundary() Returns a Geometry that is the combinatorial

boundary of the Geometry.

getEnvelope() Returns the rectangle bounding Geometry as a
Polygon.

toText() Returns the well-known textual
representation.

toBinary() Returns the well-known binary
representation.

[1] Oracle does not allow boolean expressions in the SELECT-list.

Methods on Type Point (OGC SF 3.2.11)

Method Description

getX() Returns the x-coordinate of the Point as a
Double.

getY() Returns the y-coordinate of the Point as a
Double.

Methods on Type Curve (OGC SF 3.2.12)

Method Description

getStartPoint() Returns the first point of the Curve.
getEndPoint() Returns the last point of the Curve.

isRing() Returns TRUE if Curve is closed and simple.

Res
ult

(1]
v

Res
ult
[1]

Res
ult

v
v

(1]

Pos My Or
tGI SQ acl
S L e
Sp
ati
al
v v
v v V
v v
v v V
v v
Pos My Or
tGI SQ acl
S L e
Sp
ati
al
v v V
v v V
Pos My Or
tGI SQ acl
S L e
Sp
ati
al
v v V
v v
v v V

25

[1] Oracle does not allow boolean expressions in the SELECT-list.

Methods on Type Curve / MultiCurve (OGC SF 3.2.12, 3.2.17)

Method Description Res Pos My Or
ult tGI SQ acl

S L e

Sp

ati

al

isClosed() Returns TRUE if Curve/MultiCurveisclosed, 1 v

i.e., if StartPoint(Curve) = EndPoint(Curve). [1]

getLength() Returns the length of the Curve/MultiCurve. ¢ Vv VvV

[1] Oracle does not allow boolean expressions in the SELECT-list.

Methods on Type LineString (OGC SF 3.2.13)

Method Description Res Pos My Or
ult tGI SQ acl
[11 S L e
Sp
ati
al
getNumPoints() Returns the number of points in the vV v v V
LineString.
getPointN(Integer) Returns Point n. v v v V

Methods on Type Surface / MultiSurface (OGC SF 3.2.14, 3.2.18)

Method Description Res Pos My Or
ult tGI SQ acl
S L e

Sp

ati

al

getCentroid() Returns the centroid of Surface/MultiSurface, ¥ v %X

which may lie outside of it. [1]

getArea() Returns the area of Surface/MultiSurface. v v v
getPointOnSurface() Returns a Point guaranteed to lie on the v v X v
surface. (11 [2]

[1] MySQL does not implement these methods. [2] Oracle takes an argument to this method (see
Oracle docs)

26

https://docs.oracle.com/database/121/SPATL/sdo_geom-sdo_pointonsurface.htm#SPATL1124

Methods on Type Polygon (OGC SF 3.2.15)

Method Description Res Pos My Or
ult tGI SQ acl
S L e
Sp
ati
al
getExteriorRing() Returns the exterior ring of Polygon. v v v V
getNumInteriorRing() Returns the number of interior rings. v v v
getInteriorRingN(Integer) Returns the nth interior ring. v v v

Methods on Type GeomCollection (OGC SF 3.2.16)

Method Description Res Pos My Or
ult tGI SQ acl
S L e

Sp

ati

al

getNumGeometries() Returns the number of geometries in the v v v V

collection.

getGeometryN(Integer) Returns the nth geometry in the collection. v v v

Methods that test Spatial Relationships (OGC SF 3.2.19)

Method Description Res Pos My Or
ult tGI SQ acl
11 S L e
Sp
ati
al
equals(Geometry) TRUE if the two geometries are spatially ! v1 v
equal. [2]
disjoint(Geometry) TRUE if the two geometries are spatially ! v1 v
disjoint. [2]
touches(Geometry) TRUE if the first Geometry spatially touches ! v1 v
the other Geometry. [2]
within(Geometry) TRUE if first Geometry is completely ! v1 v
contained in second Geometry. [2]
overlaps(Geometry) TRUE if first Geometries is spatially ! v 1 v
overlapping the other Geometry. [2]

27

Method Description Res Pos My Or
ult tGI SQ acl

[1] S L e
Sp
ati
al
crosses(Geometry) TRUE if first Geometry crosses the other ! v v v
Geometry.
intersects(Geometry) TRUE if first Geometry spatially intersectsthe § « 1«
other Geometry. [2]
contains(Geometry) TRUE if second Geometry is completely ! v 1 v
contained in first Geometry. [2]
relate(Geometry, String) TRUE if the spatial relationship specifiedby § « «
the patternMatrix holds.
bboxTest(Geometry) Returns TRUE if if the bounding box of this 1 v v
Geometry overlaps the passed Geometry’s [1]

bounding box

[1] Oracle does not allow boolean expressions in the SELECT-list.

[2] MySQL does not implement these methods according to the specification. They return the same
result as the corresponding MBR-based methods.

Methods on Distance Relationships (OGC SF 3.2.20)

Method Description Res Pos My Or
ult tGI SQ acl

S L e

Sp

ati

al

distance(Geometry) Returns the distance between the two v vV v V

geometries. [1]

[1] MariaDB 5.3.3+ implements this.

Methods that implement Spatial Operators (OGC SF 3.2.21)

28

Method

intersection(Geometry)

difference(Geometry)

union(Geometry)

symDifference(Geometry)

buffer(Double)

convexHull()

Description

S L

Returns a Geometry that is the set intersection ¥ v X

of the two geometries.

Returns a Geometry that is the closure of the
set difference of the two geometries.

(1]

Returns a Geometry that is the set union of the v v X

two geometries.

Returns a Geometry that is the closure of the
set symmetric difference of the two
geometries.

Returns as Geometry defined by buffering a
distance around the Geometry.

Returns a Geometry that is the convex hull of
the Geometry.

v Vv X
[1]
[1]
v Vv X
[1]
v Vv X
[1]
v Vv X

(1]

Res Pos My Or
ult tGI SQ

acl
e
Sp
ati
al

v

[1] These methods are currently not implemented in MySQL. They may appear in future releases.

Static Methods for Constructing a Geometry Value given its Well-known Representation (OGC

SF 3.2.6, 3.2.7)

Method

Spatial.geomFromText(String,
Integer)

Spatial.pointFromText(String,
Integer)

Spatial.lineFromText(String,
Integer)

Spatial.polyFromText(String,
Integer)

Spatial. mPointFromText(String,
Integer)

Spatial.mLineFromText(String,
Integer)

Description

Construct a Geometry value given its well-
known textual representation.

Construct a Point given its well-known textual
representation.

Construct a LineString given its well-known
textual representation.

Construct a Polygon given its well-known
textual representation.

Construct a MultiPoint given its well-known
textual representation.

Construct a MultiLineString given its well-
known textual representation.

Res Pos My Or

ult tGI SQ
M1 s L
X v v
X v v
X v v
X v v
X v v
X v v

acl
e
Sp
ati
al

v

29

Method Description Res Pos My Or
ult tGI SQ acl

[11 S L e

Sp

ati

al

Spatial.mPolyFromText(String, Construct a MultiPolygon given its well- X v v

Integer) known textual representation.

Spatial.geomCollFromText(Strin Construct a GeometryCollection given its well- X ¢ v ¢

g, Integer) known textual representation.
Spatial.geomFromWKB(String, Construct a Geometry value given its well- X v v
Integer) known binary representation.

Spatial.pointFromWKB(String, Construct a Point given its well-known binary X ¢ ¢
Integer) representation.

SpatiallineFromWKB(String, Construct a LineString given its well-known X Vv Vv

Integer) binary representation.
Spatial.polyFromWKB(String, ~ Construct a Polygon given its well-known X v v
Integer) binary representation.

Spatial.mPointFromWKB(String Construct a MultiPoint given its well.lknown X Vv Vv

, Integer) binary representation.

Spatial. mLineFromWKB(String, Construct a MultiLineString given its well- X v v ¢
Integer) known binary representation.

Spatial.mPolyFromWKB(String, Construct a MultiPolygon given its well- X v v
Integer) known binary representation.

Spatial.geomCollFromWKB(Stri Construct a GeometryCollection given its well- X ¢ v ¢
ng, Integer) known binary representation.

[1] These methods can’t be used in the return part because it’s not possible to determine the return
type from the parameters.

Supplementary Static Methods

These functions are only supported on certain RDBMS.

30

Method

PostGIS.bboxOverlapsLeft(Geo
metry, Geometry)

PostGIS.bboxOverlapsRight(Geo
metry, Geometry)

PostGIS.bboxLeft(Geometry,
Geometry)

PostGIS.bboxRight(Geometry,
Geometry)

PostGIS.bboxOverlapsBelow(Ge
ometry, Geometry)

PostGIS.bboxOverlapsAbove(Ge
ometry, Geometry)

PostGIS.bboxBelow(Geometry,
Geometry)

PostGIS.bboxAbove(Geometry,
Geometry)

PostGIS.sameAs(Geometry,
Geometry)

PostGIS.bboxWithin(Geometry,
Geometry)

Description

The PostGIS &< operator returns TRUE if the
bounding box of the first Geometry overlaps
or is to the left of second Geometry’s bounding
box

The PostGIS &< operator returns TRUE if the
bounding box of the first Geometry overlaps
or is to the right of second Geometry’s
bounding box

The PostGIS << operator returns TRUE if the
bounding box of the first Geometry overlaps
or is strictly to the left of second Geometry’s
bounding box

The PostGIS << operator returns TRUE if the
bounding box of the first Geometry overlaps
or is strictly to the right of second Geometry’s
bounding box

The PostGIS &<@ operator returns TRUE if the
bounding box of the first Geometry overlaps
or is below second Geometry’s bounding box

The PostGIS | &< operator returns TRUE if the
bounding box of the first Geometry overlaps
or is above second Geometry’s bounding box

The PostGIS <<| operator returns TRUE if the
bounding box of the first Geometry is strictly
below second Geometry’s bounding box

The PostGIS |<< operator returns TRUE if the
bounding box of the first Geometry is strictly
above second Geometry’s bounding box

The PostGIS ~= operator returns TRUE if the
two geometries are vertex-by-vertex equal.

The PostGIS @ operator returns TRUE if the
bounding box of the first Geometry overlaps
or is completely contained by second
Geometry’s bounding box

Res Pos My Or
ult tGI SQ acl

v

v

v

v

v

v

v

S

L

e

Sp
ati
al

X

31

Method

PostGIS.bboxContains(Geometr
y, Geometry)

MySQL.mbrEqual(Geometry,
Geometry)

MySQL.mbrDisjoint(Geometry,
Geometry)

MySQL.mbrIntersects(Geometr
y, Geometry)

MySQL.mbrTouches(Geometry,
Geometry)

MySQL.mbrWithin(Geometry,
Geometry)

MySQL.mbrContains(Geometry,
Geometry)

MySQL.mbrOverlaps(Geometry,
Geometry)

Oracle.sdo_geometry(Integer
gtype, Integer srid, SDO_POINT
point, SDO_ELEM_INFO_ARRAY
elem_info,
SDO_ORDINATE_ARRAY
ordinates)

Oracle.sdo_point_type(Double x,
Double y, Double z)

32

Description

The PostGIS ~ operator returns TRUE if the
bounding box of the first Geometry
completely contains second Geometry’s
bounding box

Returns 1 or 0 to indicate whether the
minimum bounding rectangles of the two
geometries g1 and g2 are the same.

Returns 1 or 0 to indicate whether the
minimum bounding rectangles of the two
geometries g1 and g2 are disjoint (do not
intersect).

Returns 1 or 0 to indicate whether the
minimum bounding rectangles of the two
geometries g1 and g2 intersect.

Two geometries spatially touch if their

interiors do not intersect, but the boundary of

one of the geometries intersects either the
boundary or the interior of the other.

Returns 1 or O to indicate whether the

minimum bounding rectangle of g1 is within

the minimum bounding rectangle of g2.

Returns 1 or 0 to indicate whether the

minimum bounding rectangle of g1 contains

the minimum bounding rectangle of g2.

Two geometries spatially overlap if they
intersect and their intersection results in a
geometry of the same dimension but not
equal to either of the given geometries.

Creates a SDO_GEOMETRY geometry from the

passed geometry type, srid, point, element
infos and ordinates.

Creates a SDO_POINT geometry from the
passed ordinates.

Res Pos My Or

ult tGI SQ acl
S L e

Sp

ati

al

v v X X

v X v X
v X v X
v X v X
v X v X
v X v X

Method Description Res Pos My Or

ult tGI SQ
S L

Oracle.sdo_elem_info_array(Stri Creates a SDO_ELEM_INFO_ARRAY from the v X X
ng numbers) passed comma-separeted integers.

Oracle.sdo_ordinate_array(Strin Creates a SDO_ORDINATE_ARRAY from the v X X
g ordinates) passed comma-separeted doubles.

[1] Oracle does not allow boolean expressions in the SELECT-list.

Examples

acl
e
Sp
ati
al

v

The following sections provide some examples of what can be done using spatial methods in JDOQL

queries. In the examples we use a class from the test suite. Here’s the source code for reference:

package mydomain.samples.pggeometry;
import org.postgis.LineString;

public class SampleLineString
{
private long 1id;
private String name;
private LineString geom;

public SamplelLineString(long id, String name, LineString lineString)
{

this.id = id;

this.name = name;

this.geom = lineString;

}

public long getId()
{

return id;

}

33

<jdo>
<package name="mydomain.samples.pggeometry">
<extension vendor-name="datanucleus" key="spatial-dimension" value="2"/>
<extension vendor-name="datanucleus" key="spatial-srid" value="4326"/>

<class name="SamplelLineString" table="samplepglinestring" detachable="true">
<field name="id"/>
<field name="name"/>
<field name="geom" persistence-modifier="persistent">
<extension vendor-name="datanucleus" key="mapping" value="no-
userdata"/>
</field>
</class>
</package>
</jdo>

Example 1 - Spatial Method in the Filter of a Query

This example shows how to use spatial methods in the filter of a query. The query returns a list of
SampleLineString(s) whose line string has a length less than the given limit.

Double 1imit = new Double(100.0);

Query query = pm.newQuery(SampleLineString.class, "geom != null && geom.length() <
:Limit");

List list = (List) query.execute(limit);

Example 2 - Spatial Method in the Result Part of a Query

This time we use a spatial method in the result part of a query. The query returns the length of the
line string from the selected SampleLineString

query = pm.newQuery(SampleLineString.class, "id == :id");
query.setResult("geom.pointN(2)");

query.setUnique(true);

Geometry point = (Geometry) query.execute(new Long(1001));

Example 3 - Nested Methods

You may want to use nested methods in your query. This example shows how to do that. The query
returns a list of SampleLineString(s), whose end point spatially equals a given point.

Point point = new Point("SRID=4326;POINT(110 45)");

Query query = pm.newQuery(SampleLineString.class, "geom != null &&
Spatial.equals(geom.endPoint(), :point)");

List list = (List) query.execute(point);

34

Literals

JDOQL supports literals of the following types : Number, boolean, character, String, and null. For
example, with a numeric literal

Query q = pm.newQuery("SELECT FROM mydomain.Person WHERE age == 25");

When String literals are specified using string format JDOQL they should be surrounded by single-
quotes ". For example

Query q = pm.newQuery("SELECT FROM mydomain.Person WHERE firstName == '"John'");

] .
== Extension

DataNucleus also provides an extension to support array literals for RDBMS. You would do as
follows in your J]DOQL

Query q = pm.newQuery("SELECT FROM mydomain.Person WHERE {'John', 'Fred',
"Graham'}.contains(firstName)");

namely using curly brackets to represent the array with its literal elements.

RDBMS : Parameters .v. Literals

When considering whether to embody a literal into a JDOQL query, you should consider using a
parameter instead. The advantage of using a parameter is that the generated SQL will have a '?'
rather than the value. As a result, if you are using a connection pool that supports
PreparedStatement caching, this will potentially reuse an existing statement rather than generating
a new one each time. If you only ever invoke a query with a single possible value of the parameter
then there is no advantage. If you invoke the query with multiple possible values of the parameter
then this advantage can be significant.

Parameters

With a query you can pass values into the query as parameters. This is useful where you don’t want
to embed particular values in the query itself, so making it reusable with different values. JDOQL
allows two types of parameters.

Explicit Parameters

If you declare the parameters when defining the query (using the PARAMETERS keyword in the
single-string form, or via the declareParameters method) then these are explicit parameters. This
sets the type of the parameter, and when you pass the value in at execute it has to be of that type.
For example

35

Query query = pm.newQuery("SELECT FROM mydomain.Product WHERE price < limit PARAMETERS
double limit");
List results = (List)query.execute(150.00);

Note that if declaring multiple parameters then they should be comma-separated.

With the Declarative API you would define explicit parameters like this (and use comma-separated
if defining multiple)

q.parameters("double limit");

Implicit Parameters

If you don’t declare the parameters when defining the query but instead prefix identifiers in the
query with : (colon) then these are implicit parameters. For example

Query query = pm.newQuery("SELECT FROM mydomain.Product WHERE price < :limit");
List results = (List)query.execute(150.00);

a4 .
=== Extension

In some situations you may have a map of parameters keyed by their name, yet the query in
question doesn’t need all parameters. Normal JDO execution would throw an exception here since
they are inconsistent with the query. You can omit this check by setting

q.addExtension("datanucleus.query.checkUnusedParameters”, "false");

Setting parameters at execution time

Defining a query to accept parameters is only the first part. You then need to specify the parameter
values at execution time. This can be done in many ways, but here are some examples

36

// === 3D0QL with named parameters ===
g.setFilter("this.name == :name && this.serialNo == :serial");

Map params = new HashMap();
params.put("name", "Walkman");
params.put("serial", "123021");

// Set parameter values via method call
q.setNamedParameters(params);

// Alternatively set the parameter values on execute()
q.executeWithMap(params);

// === 1DOQL with numbered parameters ===
q.setFilter("this.name == ?1 && this.serialNo == 72");

// Set parameter values via method call, using the number order of the query
parameters
q.setParameters("Walkman", "123021");

// Alternatively set the parameter values on execute(), using the number order of the
query parameters
g.execute("Walkman", "123021");

Variables

In JDOQL you can connect two parts of a query using something known as a variable. For example,
we want to retrieve all objects with a collection that contains a particular element, and where the
element has a particular field value. We define a query like this

Query query = pm.newQuery("SELECT FROM mydomain.Supplier " +
"WHERE this.products.contains(prod) && prod.name == 'Beans' VARIABLES
mydomain.Product prod");

So we have a variable in our query called prod that connects the two parts. You can declare your
variables (using the VARIABLES keyword in the single-string form, or via the declareVariables
method) if you want to define the type like here (explicit), or you can leave them for the query
compilation to determine (implicit).

Another example, in this case our candidate (Product) has no relation, but a class (Inventory) has a

37

relation (1-N) to it (field "products") and we want to query based on that relation, returning the
product name for a particular inventory.

Query q = pm.newQuery("SELECT this.name FROM mydomain.Product WHERE
inv.products.contains(this) AND inv.name == 'Sale' VARIABLES mydomain.Inventory inv");

Note that if declaring multiple variables then they should be semicolon-separated. See also this blog
post which demonstrates variables across 1-1 "relations"” where you only have the "id" stored rather
than a real relation.

With the Declarative API you would define explicit variables like this

g.variables("mydomain.Product prod");

a4 .
=== Extension

RDBMS : In all situations we aim for DataNucleus JDOQL implementation to work out the
right way of linking a variable into the query, whether this is via a join (INNER, LEFT OUTER),
or via a subquery. As you can imagine this can be complicated to work out the optimum for all
situations so with that in mind we allow (for a limited number of situations) the option of
specifying the join type. This is achieved by setting the query extension
*datanucleus.query.jdoql.{varName}.join to the required type. For 1-1 relations this would be
either "INNERJOIN" or "LEFTOUTERJOIN", and for 1-N relations this would be either "INNERJOIN",
"LEFTOUTERJOIN" or "SUBQUERY".

Please, if you find a situation where the optimum join type is not chosen then report it in
GitHub so it can be registered for future work

Imports

JDOQL uses the imports declaration to create a type namespace for the query. During query
compilation, the classes used in the query, if not fully qualified, are searched in this namespace. The
type namespace is built with primitives types, java.lang.* package, package of the candidate class,
import declarations (if any).

To resolve a class, the J]DOQL compiler will use the class fully-qualified name to load it, but if the
class is not fully qualified, it will search by prefixing the class name with the imported package
names declared in the type namespace. All classes loaded by the query must be acessible by either
the candidate class classloader, the PersistenceManager classloader or the current Thread
classloader. The search algorithm for a class in the JDOQL compiler is the following:

« if the class is fully qualified, load the class.

« if the class is not fully qualified, iterate each package in the type namespace and try to load the
class from that package. This is done until the class is loaded, or the type namespace package
names are exhausted. If the class cannot be loaded an exception is thrown.

38

https://datanucleus.wordpress.com/2015/03/12/jdo-querying-between-classes-without-relation/
https://datanucleus.wordpress.com/2015/03/12/jdo-querying-between-classes-without-relation/
https://github.com/datanucleus/datanucleus-rdbms
https://github.com/datanucleus/datanucleus-rdbms

Note that the search algorithm can be problematic in performance terms if the class is not fully
qualified or declared in imports using package notation. To avoid such problems, either use fully
qualified class names or import the class in the imports declaration.

o If you always fully-qualify the candidate, variable and parameter types then there
is no need to specify any imports (just like in Java).

IF ELSE expressions

For particular use in the result clause, you can make use of a IF ELSE expression where you want to
return different things based on some condition(s). Like this

SELECT p.personNum, IF (p.age < 18) 'Youth' ELSE IF (p.age >= 18 && p.age < 65)
"Adult' ELSE 'Old' FROM mydomain.Person p

So in this case the second result value will be a String, either "Youth", "Adult" or "Old" depending on
the age of the person. The BNF structure of the JDOQL IF ELSE expression is

IF (conditional_expression) scalar_expression {ELSE IF (conditional_expression)
scalar_expression}* ELSE scalar_expression

Operators

The following list describes the operator precedence in JDOQL.

* Cast

* Unary ("~") ("!")

e Unary ("+") ("-")

o Multiplicative ("*") ("/") ("%")

 Additive ("+") ("-")

* Relational (">=") (">") ("<") ("<") ("instanceof")
* Equality ("==") ("!=")

* Boolean logical AND ("&")

* Boolean logical OR ("|")

* DataNucleus Extension : Bitwise AND ("&") - for integral types on PostgreSQL, MySQL,
SQLServer, NuoDB

» DataNucleus Extension : Bitwise OR ("|") - for integral types on PostgreSQL, MySQL, SQLServer,
NuoDB

* DataNucleus Extension : Bitwise XOR ("A") - for integral types on PostgreSQL, MySQL,
SQLServer, NuoDB

¢ Conditional AND ("&&")

39

¢ Conditional OR ("||")

The concatenation operator(+) concatenates a String to either another String or Number.
Concatenations of String or Numbers to null results in null.

instanceof

JDOQL allows the Java keyword instanceof so you can compare objects against a class.

Let’s take an example. We have a class A that has a field "b" of type B and B has subclasses B1, B2,
B3. Clearly the field "b" of A can be of type B, B1, B2, B3 etc, and we want to find all objects of type A
that have the field "b" that is of type B2. We do it like this

Declarative JDOQL :

Query query = pm.newQuery(A.class);
query.setFilter("b instanceof mydomain.B2");
List<A> results = query.executelist();

Single-String JDOQL :
Query query = pm.newQuery("SELECT FROM mydomain.A WHERE b instanceof mydomain.B2");
List results = (List)query.execute();

casting

JDOQL allows use of Java-style casting so you can type-convert fields etc.

Let’s take an example. We have a class A that has a field "b" of type B and B has subclasses B1, B2,
B3. The B2 subtype has a field "other", and we know that the filtered A will have a B2. You could
specify a filter using the "B2.other" field like this

((mydomain.B2)b).other == :someVal"

Subqueries

With JDOQL the user has a very flexible query syntax which allows for querying of the vast
majority of data components in a single query. In some situations it is desirable for the query to
utilise the results of a separate query in its calculations. JDOQL allows subqueries, so that both
calculations can be performed in one query. The syntax of a string-based subquery is as follows

SELECT <subquery-result-clause>
[FROM <subquery-from-clause>
[WHERE <filter>]
[VARIABLES <variable declarations>]
[PARAMETERS <parameter declarations>]

40

The subquery-result-clause consists of an optional keyword "DISTINCT" followed by a single
expression. The subquery-from-clause may have one of two forms: A candidate class name followed
by an optional alias definition followed by an optional "EXCLUDE SUBCLASSES", or a field access
expression followed by an optional alias definition.

Here’s an example, using single-string JDOQL

SELECT FROM mydomain.Employee WHERE salary > (SELECT avg(e.salary) FROM
mydomain.Employee e)

So we want to find all Employees that have a salary greater than the average salary. In single-string
JDOQL the subquery must be in parentheses (brackets). Note that we have defined the subquery
with an alias of "e", whereas in the outer query the alias is "this".

We can specify the same query using the Declarative API, like this

Query averageSalaryQuery = pm.newQuery(Employee.class);
averageSalaryQuery.setResult("avg(this.salary)");

Query q = pm.newQuery(Employee.class, "salary > averageSalary");
g.declareVariables("double averageSalary");
q.addSubquery(averageSalaryQuery, "double averageSalary", null, null);
List<Employee> results = q.executelist();

So we define a subquery as its own Query (that could be executed just like any query if so desired),
and the in the main query have an implicit variable that we define as being represented by the
subquery.

Referring to the outer query in the subquery

JDOQL subqueries allows use of the outer query fields within the subquery if so desired. Taking the
above example and extending it, here is how we do it in single-string JDOQL

SELECT FROM mydomain.Employee WHERE salary >
(SELECT avg(e.salary) FROM mydomain.Employee e WHERE e.lastName == this.lastName)

So with single-string JDOQL we make use of the alias identifier "this" to link back to the outer query.

Using the Declarative API, to achieve the same thing we would do

41

Query averageSalaryQuery = pm.newQuery(Employee.class);
averageSalaryQuery.setResult("avg(this.salary)");
averageSalaryQuery.setFilter("this.lastName == :lastNameParam");

Query q = pm.newQuery(Employee.class, "salary > averageSalary");
q.declareVariables("double averageSalary");

q.addSubquery(averageSalaryQuery, "double averageSalary", null, "this.lastName");
List<Employee> results = qg.executelist();

So with the Declarative API we make use of parameters, and the last argument to addSubquery is
the value of the parameter lastNameParam.

Candidate of the subquery being part of the outer query

There are occasions where we want the candidate of the subquery to be part of the outer query, so
JDOQL subqueries has the notion of a candidate expression. This is an expression relative to the
candidate of the outer query. An example

SELECT FROM mydomain.Employee WHERE this.weeklyhours >
(SELECT AVG(e.weeklyhours) FROM this.department.employees e)

so the candidate of the subquery is this.department.employees. If using a candidate expression we
must provide an alias. You can do the same with the Declarative API. Like this

Query averageHoursQuery = pm.newQuery(Employee.class);
averageHoursQuery.setResult("avg(this.weeklyhours)");

Query q = pm.newQuery(Employee.class);
q.setFilter("this.weeklyhours > averageWeeklyhours");
q.addSubquery(averageHoursQuery, "double averageWeeklyhours",
"this.department.employees”, null);

so now our subquery has a candidate related to the outer query candidate.

In strict JDOQL you can only have the subquery in the "filter" (WHERE) clause. DataNucleus
additionally allows it in the "result" (SELECT) clause.

Using methods on the subquery

A subquery is effectively a Collection, so you have access to the normal methods of a Collection to
use on the subquery. Here are a couple of examples

SELECT FROM mydomain.Manager WHERE (SELECT FROM mydomain.Employee e WHERE e.manager ==
this).isEmpty()

42

which returns all Manager objects which have no Employee(s).

This can equally be expressed using contains()

SELECT FROM mydomain.Manager WHERE !(SELECT FROM mydomain.Employee e).contains(this)

o There is no size() method on subqueries but you can achieve the same by selecting
COUNT(e) in the subquery (where e is the subquery alias).

Result clause

By default (when not specifying the result) the objects returned will be of the candidate class type,
where they match the query filter. The result clause can contain (any of) the following

» DISTINCT - optional keyword at the start of the results to make them distinct

* this - the candidate instance

* Afield name

* Avariable

* A parameter (though why you would want a parameter returning is hard to see since you input
the value in the first place)

* An aggregate (count(), avg(), sum(), min(), max())
* An expression involving a field (e.g "field1 + 1")

* A navigational expression (navigating from one field to another ... e.g "field1.field4")

so you could specify something like
count(field1), field2

There are situations when you want to return a single number for a column, representing an
aggregate of the values of all records. There are 5 standard JDO aggregate functions available.
These are

* avg(val) - returns the average of "val". "val" can be a field, numeric field expression or "distinct
field". Returns double.

* sum(val) - returns the sum of "val". "val" can be a field, numeric field expression, or "distinct
field". Returns the same type as the type being summed

e count(val) - returns the count of records of "val". "val" can be a field, or can be "this", or
"distinct field". Returns long

* min(val) - returns the minimum of "val". "val" can be a field. Returns the same type as the type
used in "min"

* max(val) - returns the maximum of "val". "val" can be a field. Returns the same type as the type
used in "max"

43

So to utilise these you could specify a result like
max(price), min(price)

This will return a single row of results with 2 values, the maximum price and the minimum price.

Note that what you specify in the result defines what form of result you get back when executing
the query.

* {ResultClass} - this is returned if you have only a single row in the results and you specified a
result class.

* Object - this is returned if you have only a single row in the results and a single column. This is
achieved when you specified either UNIQUE, or just an aggregate (e.g "max(field2)")

* Object[] - this is returned if you have only a single row in the results, but more than 1 column
(e.g "max(field1), avg(field2)")

» List<{ResultClass}> - this is returned if you specified a result class.

* List<Object> - this is returned if you have only a single column in the result, and you don’t have
only aggregates in the result (e.g "field2")

* List<Object[]> - this is returned if you have more than 1 column in the result, and you don’t

have only aggregates in the result (e.g "field2, avg(field3)")

With the string-based API the result is part of the query. With the Declarative API you would specify
the result like this

g.result(result);

// alternatively q.setResult(result)

Result Class

By default a JDOQL query will return a result matching the result clause. You can override this if
you wish by specifying a result class. If your query has only a single row in the results then you will
get an object of your result class back, otherwise you get a List of result class objects. The Result
Class has to meet certain requirements. These are

* Can be one of Integer, Long, Short, Float, Double, Character, Byte, Boolean, String,
java.math.BigInteger, java.math.BigDecimal, java.util.Date, java.sql.Date, java.sql.Time,
java.sql.Timestamp, or Object[]

* Can be a user defined class, that has either a constructor taking arguments of the same type as
those returned by the query (in the same order), or has a public put(Object, Object) method, or
public setXXX() methods, or public fields.

In terms of how the Result Class looks, you have two options

* Constructor taking arguments of the same types and the same order as the result clause. An

44

instance of the result class is created using this constructor. For example

public class Price

{
protected double amount = 0.0;
protected String currency = null;
public Price(double amount, String currency)
{
this.amount = amount;
this.currency = currency;
}
}

* Default constructor, and setters for the different result columns, using the alias name for each
column as the property name of the setter. For example

public class Price

{

protected double amount = 0.0;

protected String currency = null;

public Price()

{

}

public void setAmount(double amt) {this.amount = amt;}

public void setCurrency(String curr) {this.currency = curr;}
}

With the string-based API the resultClass can be part of the query (INTO {result-class}). With the
Declarative API you would specify the result class upon execution

g.executeResultList(MyResultClass.class);

g.executeResultUnique(MyResultClass.class);

Grouping of Results

By default your results will have no specified "grouping”. You can specify a grouping to include an
optional having expression. When grouping is specified, each result expression must either be an
expression contained in the grouping, or an aggregate evaluated once per group.

45

With the string-based API the grouping would be part of the query (GROUP BY {grouping}). With the
Declarative API you would specify the grouping like this

q.groupBy(grouping);

Ordering of Results

By default your results will be returned in the order determined by the datastore, so don’t rely on
any particular order. You can, of course, specify the order yourself. You do this using field/property
names and ASC/DESC keywords. For example

field1 ASC, field2 DESC

which will sort primarily by field1 in ascending order, then secondarily by field2 in descending
order.

In the ordering you can also define where NULL values of the ordered field/property go in the
order, so the full syntax supported is

fieldName [ASC|DESC] [NULLS FIRST|NULLS LAST]

Note that this is only supported for a few RDBMS (H2, HSQLDB, PostgreSQL, DB2, Oracle, Derby,
Firebird, SQLServer v11+).

With the string-based API the ordering would be part of the query (ORDER BY {ordering}). With the
Declarative API you would specify the ordering like this

q.orderBy(ordering);

Range of Results

By default your query will return all results matching the specified filter. You can restrict which
results are returned by using the range. For example

RANGE 10,20

which will return just the results numbers 10-19 inclusive. Obviously bear in mind that if specifying
the range then you should really specify an ordering otherwise the range positions will be not
defined.

With the string-based API the ordering would be part of the query (RANGE {start,end}). With the
Declarative API you would specify the range like this

46

#jdoql_ordering

g.range(10, 20);

RANGE handling is implemented efficiently for MySQL, Postgresql, HSQLDB, H2,
SQLServer (using the LIMIT SQL keyword) and Oracle (using the ROWNUM

o keyword), with the query only finding the objects required by the user directly in
the datastore. For other RDBMS the query will retrieve all objects up to the "to"
record, and will not pass any unnecessary objects that are before the "from"
record.

JDOQL In-Memory queries
E Extension

The typical use of a JDOQL query is to translate it into the native query language of the datastore
and return objects matched by the query. Sometimes you want to query over a set of objects that
you have to hand, or for some datastores it is simply impossible to support the full JDOQL syntax in
the datastore native query language. In these situation we need to evaluate the query in-memory. In
the latter case of the datastore not supported the full JDOQL syntax we evaluate as much as we can
in the datastore and then instantiate those objects and evaluate further in-memory. Here we
document the current capabilities of in-memory evaluation in DataNucleus.

To enable evaluation in memory you specify the query extension
datanucleus.query.evaluateInMemory to true as follows

query.addExtension("datanucleus.query.evaluateInMemory","true");

This is also useful where you have a Collection of (persisted) objects and want to run a query over
the Collection. Simply turn on in-memory evaluation, and supply the candidate collection to the
query, and no communication with the datastore will be needed.

In-memory JDOQL evaluation does not support variables currently, or correlated
A subqueries. You should omit such things from your query and try to evaluate them
manually in your own code.

Specify candidates to query over

With JDO you can define a set of candidate objects that should be queried, rather than just going to
the datastore to retrieve those objects. When you specify this you will automatically be switched to
evaluate the query in-memory. You set the candidates like this

Query query = pm.newQuery(...);
query.setCandidates(myCandidates);
List<Product> results = query.executelist();

47

Update/Delete queries

JDOQL offers some possibilities for updating/deleting data in the datastore via query. Note that only
the first of these is standard JDOQL, whereas the others are DataNucleus extensions.

Deletion by Query

If you want to delete instances of a candidate using a query, you simply define the query
candidate/filter in the normal way, and then instead of calling query.executeXXX you call
query.deletePersistentAll(). Like this

Query query = pm.newQuery("SELECT FROM mydomain.A WHERE this.value < 50");
Long number = (Long)query.deletePersistentAll();

The value returned is the number of instances that were deleted. Note that this will perform any
cascade deletes that are defined for these instances. In addition, all instances in memory will reflect
this deletion.

Bulk Delete

i .
== Extension

DataNucleus provides an extension to allow bulk deletion. This differs from the "Deletion by Query"
above in that it simply goes straight to the datastore and performs a bulk delete, leaving it to the
datastore referential integrity to handle relationships. To enable "bulk delete" you need the
persistence property datanucleus.query.jdoql.allowAll set to true. You then perform "bulk delete"
like this

Query query = pm.newQuery("DELETE FROM mydomain.A WHERE this.value < 50");
Long number = (Long)query.execute();

Again, the number returned is the number of records deleted.

a Bulk Delete will not be reflected in L1 cached objects, and cascading defined in
metadata will not be invoked when using this

Bulk Update

a4 .
=== Extension

DataNucleus provides an extension to allow bulk update. This allows you to do bulk updates direct
to the datastore without having to load objects into memory etc. To enable "bulk update” you need
the persistence property datanucleus.query.jdoql.allowAll set to true. You then perform "bulk
update" like this

48

Query query = pm.newQuery("UPDATE mydomain.A SET this.value=this.value-5.0 WHERE
this.value > 100");
Long number = (Long)query.execute();

Again, the number returned is the number of records updated.

ﬁ Bulk Update will not be reflected in L1 cached objects, and cascading defined in
metadata will not be invoked when using this

JDOQL Strictness

By default DataNucleus allows some extensions in syntax over strict JDOQL (as defined by the JDO
spec). To allow only strict JDOQL you can do as follows

Query query = pm.newQuery(...);
query.addExtension("datanucleus.query.jdogql.strict", "true");

JDOQL : SQL Generation for RDBMS

When using the method contains on a collection (or containsKey, containsValue on a map) this will
either add an EXISTS subquery (if there is a NOT or OR present in the query) or will add an INNER
JOIN across to the element table. Let’s take an example

SELECT FROM mydomain.A
WHERE (elements.contains(b1) && b1.name == 'Jones')
VARIABLES mydomain.B b1

Note that we add the contains first that binds the variable "b1" to the element table, and then add
the condition on the variable. The order is important here. If we instead had put the condition on
the variable first we would have had to do a CROSS JOIN to the variable table and then try to repair
the situation and change it to INNER JOIN if possible. In this case the generated SQL will be like

SELECT ‘A0‘.‘ID'

FROM ‘A ‘AQ°

INNER JOIN ‘B* 'B@' ON ‘A@‘.ID = ‘B‘.ELEMENT
WHERE ‘B0‘.NAME = 'Jones'

49

JDOQL Typed

JDO 3.2 introduces a way of performing queries using a JDOQLTypedQuery API, that copes with
refactoring of classes/fields. The API follows the same JDOQL syntax that we have seen earlier in
terms of the components of the query etc. It produces queries that are much more elegant and
simpler than the equivalent "Criteria" API in JPA, or the Hibernate Criteria API. See this comparison
of JPA Criteria and JDO Typesafe which compares a prototype of this JDOQLTypedQuery API against
JPA Criteria.

Preparation

To set up your environment to use this JDOQLTypedQuery API you need to enable annotation
processing, place some DataNucleus jars in your build path, and specify a @PersistenceCapable
annotation on your classes to be used in queries (you can still provide the remaining information in
XML metadata if you wish to). This annotation processor will (just before compile of your
persistable classes), create a query metamodel "Q" class for each persistable class. This is similar
step to what QueryDSL requires, or indeed the JPA Criteria static metamodel.

Using Maven

With Maven you need to have the following in your POM

<dependencies>

<dependency>
<groupId>org.datanucleus</groupld>
<artifactId>datanucleus-jdo-query</artifactId>
<version>[5.0.9,)</version>

</dependency>

<dependency>
<groupId>org.datanucleus</groupIld>
<artifactId>javax.jdo</artifactIld>
<version>[3.2.0-m9, 3.9)</version>

</dependency>

</dependencies>

This creates the "metamodel” Q classes under target/generated-sources/annotations/. You can change
this location using the configuration property generatedSourcesDirectory of the maven-compiler-

plugin.
Using Eclipse
With Eclipse you need to

* Go to Java Compiler and make sure the compiler compliance level is 1.8 or above (but then that
is needed for this version of DataNucleus anyway).

* Go to Java Compiler — Annotation Processing and enable the project specific settings and enable

50

query.html#jdoql
http://datanucleus.wordpress.com/2010/11/jdo-typesafe-vs-jpa-criteria.html
http://datanucleus.wordpress.com/2010/11/jdo-typesafe-vs-jpa-criteria.html

annotation processing

* Go to Java Compiler — Annotation Processing — Factory Path, enable the project specific settings
and then add the following jars to the list: datanucleus-jdo-query.jar, javax.jdo.jar

This creates the "metamodel” Q classes under target/generated-sources/annotations/. You can change
this location on the Java Compiler — Annotation Processing page.

Using Scala

Please refer to this proof of concept project which demonstrates use of DataNucleus JDO (including
Typed queries) with Scala.

Query Classes

The above preparation will mean that whenever you compile, the DataNucleus annotation
processor (in datanucleus-jdo-query.jar) will generate a query class for each model class that is
annotated as persistable. So what is a query class you ask. It is simply a mechanism for providing
an intuitive API to generating queries. If we have the following model class

@PersistenceCapable
public class Product
{

@PrimaryKey

long id;

String name;

double value;

then the (generated) query class for this will be

public class QProduct extends org.datanucleus.api.jdo.query.PersistableExpressionImpl
<Product>
implements PersistableExpression<Product>

public static QProduct candidate(String name) {...}
public static QProduct candidate() {...}

public static QProduct variable(String name) {...}
public static QProduct parameter(String name) {...}

public NumericExpression<Long> id;

public StringExpression name;
public NumericExpression<Double> value;

31

https://github.com/frgomes/poc-scala-datanucleus

The generated class has the name of form *Q*{className}. Also the generated class, by default, has
a public field for each persistable field/property and is of a type XXXExpression. These expressions
allow us to give Java like syntax when defining your queries (see below). So you access your
persistable members in a query as candidate.name for example.

As mentioned above this is the default style of query class. However you can also create it in
property style, where you access your persistable members as candidate.name() for example. The
benefit of this approach is that if you have 1-1, N-1 relationship fields then it only initialises the
members when called, whereas in the field case above it has to initialise all in the constructor, so at
static initialisation. You enable use of property mode by adding the compiler argument
-AqueryMode=PROPERTY. All examples below use field mode but just add () after the field to see
the equivalent in property mode

DataNucleus currently only supports generation of Q classes for persistable classes
o that are in their own source file, so no support for inline static persistable classes
is available currently

The JDOQL Typed query mechanism only works for classes that are annotated, and
o not for classes that use XML metadata. This is due to the fact that it makes use of a
Java annotation processor.

Limitations

There are some corner cases where the use of expressions and this API may require casting to allow
the full range of operations for JDOQL. Some examples

 If you have a List field and call ListExpression.get(position) this returns an Expression rather
than a specific NumericExpression, StringExpression, or whatever subtype. You would need to
cast the result to do subsequent calls.

 If you have a Map field and call MapExpression.get(key) this returns an Expression rather than a
specific NumericExpression, StringExpression, or whatever subtype. You would need to cast the
result to do subsequent calls.

* If you have a Collection parameter and call CollectionParameter.contains(fieldExpression) then
you may need to cast the fieldExpression to Expression since the CollectionParameter will not
have adequate java generic information for the compiler to do it automatically

 If you have a Map parameter and call MapParameter.contains(fieldExpression) then you may
need to cast the fieldExpression to Expression since the MapParameter will not have adequate java
generic information for the compiler to do it automatically

Query API - Filtering
Let’s provide a sample usage of this query API. We want to construct a query for all products with a

value below a certain level, and where the name starts with "Wal". So a typical query in a JDO-
enabled application

32

pm = pmf.getPersistenceManager();

JDOQLTypedQuery<Product> tq = pm.newJDOQLTypedQuery(Product.class);

QProduct cand = QProduct.candidate();

List<Product> results = tq.filter(cand.value.1t(40.00).and(cand.name.startsWith(

"Wa-l.")))
.executelist();

This equates to the single-string query
SELECT FROM mydomain.Product WHERE this.value < 40.0 && this.name.startsWith("Wal")

As you see, we create a parametrised query, and then make use of the query class to access the
candidate, and from that make use of its fields, and the various Java methods present for the types
of those fields. Note that the API is fluent, meaning you can chain calls easily.

Query API - Ordering

We want to order the results of the previous query by the product name, putting nulls first.
tq.orderBy(cand.name.asc().nullsFirst());
This query now equates to the single-string query

SELECT FROM mydomain.Product WHERE this.value < 40.0 && this.name.startsWith("Wal")
ORDER BY this.name ASCENDING NULLS FIRST

If you don’t want to specify null positioning, simply omit the nullsFirst() call. Similarly to put nulls
last then call nullsLast().

Query API - Methods

In the above example you will have seen the use of some of the normal JDOQL methods. With the
JDOQLTyped API these are available on the different types of expressions. For example, cand.name
is a StringExpression and consequently it has all of the normal String methods available, just like in
JDOQL and just like in Java. Similarly if we had a class Inventory which had a Collection of Product,
then we could use the method contains on the CollectionExpression.

o The JDOQL methods JDOHelper.getObjectld and JDOHelper.getVersion are available
on PersistableExpression, for the object that they would be invoked on.

o The JDOQL methods Math.{xxx} are available on NumericExpression, for the
numeric that they would be invoked on.

33

GeoSpatial Object Methods

a .
== Extension

When you have fields/properties that use geospatial types, you can query these using methods in
JDOQL. DataNucleus also allows use of methods using JDOQLTypedQuery for these types using a
vendor extension.

o You need to be using the DataNucleus javax.jdo.jar to be able to use this
extension.

Firstly, a geospatial field will be mapped on to one of GeometryExpression, LineStringExpression,
PointExpression, PolygonExpression, LinearRingExpression, MultilineStringExpression,
MultiPointExpression, or MultiPolygonExpression. These types have a range of methods available on
them.

An example,

JDOQLTypedQuery<Property> tq = pm.new]DOQLTypedQuery(Property.class);
QProperty cand = QProperty.candidate();

tq.filter(cand.location.ne((Point)null).and(cand.location.getX().1t(tq.numericParamete
r("thex"))));
tq.setParameter("theX", 100.0);

List list = tqg.executelist();
which is equivalent to the JDOQL

SELECT FROM mydomain.Property WHERE this.location.getX() < :theX

GeoSpatial Static Methods

a .
== Extension

You can also invoke static geospatial methods in JDOQLTypedQuery. You do this via use of the
GeospatialHelper.

o You need to be using the DataNucleus javax.jdo.jar to be able to use this
extension.

GeospatialHelper geoHelper = tq.geospatialHelper();

GeometryExpression geomExpr = geoHelper.geometryFromText("POINT(25 45)", 4126);

54

query.html#jdoql_geospatial_methods
query.html#jdoql_geospatial_methods
http://www.datanucleus.org/javadocs/javax.jdo/3.2/javax/jdo/query/geospatial/package-summary.html
http://www.datanucleus.org/javadocs/javax.jdo/3.2/javax/jdo/query/geospatial/package-summary.html

and this expression is then available to be used in the JDOQLTypedQuery.

Query API - Results

Let’s take the query in the above example and return the name and value of the Products only

JDOQLTypedQuery<Product> tq = pm.newJDOQLTypedQuery(Product.class);
QProduct cand = QProduct.candidate();
List<Object[]> results = tq.filter(cand.value.1t(40.00).and(cand.name.startsWith(
"Wal"))).orderBy(cand.name.asc())
.result(false, cand.name, cand.value).executeResultlList();

This equates to the single-string query

SELECT this.name,this.value FROM mydomain.Product WHERE this.value < 40.0 &&
this.name.startsWith("Wal") ORDER BY this.name ASCENDING

A further example using aggregates

JDOQLTypedQuery<Product> tq = pm.newJDOQLTypedQuery(Product.class);
Object results =

tq.result(false, QProduct.candidate().value.max(), QProduct.candidate().value.
min()).executeResultUnique();

This equates to the single-string query
SELECT max(this.value), min(this.value) FROM mydomain.Product
If you wanted to assign an alias to a result component you do it like this

tq.result(false, cand.name.as("THENAME"), cand.value.as("THEVALUE"));

Query API - Parameters

It is important to note that JDOQLTypedQuery only accepts named parameters. You obtain a named
parameter from the JDOQLTypedQuery, and then use it in the specification of the filter, ordering,
grouping etc. Let’s take the query in the above example and specify the "Wal" in a parameter.

55

JDOQLTypedQuery<Product> tq = pm.newJDOQLTypedQuery(Product.class);

QProduct cand = QProduct.candidate();

List<Product> results =
tq.filter(cand.value.1t(40.00).and(cand.name.startsWith(tq.stringParameter

("prefix"))))
.orderBy(cand.name.asc())
.setParameter("prefix", "Wal").executelist();

This equates to the single-string query

SELECT FROM mydomain.Product WHERE this.value < 40.0 && this.name.startsWith(:prefix)
ORDER BY this.name ASCENDING

RDBMS : Parameters .v. Literals

When considering whether to embody a literal into a JDOQL Typed query, you should consider
using a parameter instead. The advantage of using a parameter is that the generated SQL will have
a '?" rather than the value. As a result, if you are using a connection pool that supports
PreparedStatement caching, this will potentially reuse an existing statement rather than generating
a new one each time. If you only ever invoke a query with a single possible value of the parameter
then there is no advantage. If you invoke the query with multiple possible values of the parameter
then this advantage can be significant.

Query API - Variables

Let’s try to find all Inventory objects containing a Product with a particular name. This means we
need to use a variable. Just like with a parameter, we obtain a variable from the Q class.

JDOQLTypedQuery<Inventory> tq = pm.newJDOQLTypedQuery(Inventory.class);
QProduct var = QProduct.variable("var");

QInventory cand = QInventory.candidate();

List<Inventory> results = tq.filter(cand.products.contains(var).and(var.name
.startsWith("Wal"))).executelist();

This equates to the single-string query

SELECT FROM mydomain.Inventory WHERE this.products.contains(var) && var.name
.startsWith("Wal")

Query API - If-Then-Else

Let’s make use of an IF-THEN-ELSE expression to return the products based on whether they are
"domestic" or "international” (in our case its just based on the "id")

36

JDOQLTypedQuery<Product> tq = pm.newJDOQLTypedQuery(Product.class);

QProduct cand = QProduct.candidate();

IfThenElseExpression<String> ifElseExpr = tq.ifThenElse(String.class, cand.id.1t(
1000), "Domestic", "International");

tq.result(false, ifElseExpr);

List<String> results = tq.executeResultlList();

This equates to the single-string query

SELECT IF (this.id < 1000) "Domestic" ELSE "International" FROM mydomain.Product

Query API - Subqueries

Let’s try to find all Products that have a value below the average of all Products. This means we
need to use a subquery

JDOQLTypedQuery<Product> tq = pm.newJDOQLTypedQuery(Product.class);

QProduct cand = QProduct.candidate();

TypesafeSubquery<Product> tqsub = tq.subquery(Product.class, "p");

QProduct candsub = QProduct.candidate("p");

List<Product> results = tq.filter(cand.value.lt(tqsub.selectUnique(candsub.value.
avg()))).executelist();

Note that where we want to refer to the candidate of the subquery, we specify the alias ("p")
explicitly. This equates to the single-string query

SELECT FROM mydomain.Product WHERE this.value < (SELECT AVG(p.value) FROM
mydomain.Product p)

When you are using a subquery and want to refer to the candidate (or field
o thereof) of the outer query in the subquery then you would use cand in the above
example (or a field of it as required).

Query API - Candidates

If you don’t want to query instances in the datastore but instead query a collection of candidate
instances, you can do this by setting the candidates, like this

JDOQLTypedQuery<Product> tq = pm.newJDOQLTypedQuery(Product.class);

QProduct cand = QProduct.candidate();

List<Product> results = tq.filter(cand.value.1t(40.00)).setCandidates(myCandidates
).executelist();

57

This will process the query in-memory.

38

query.html#jdoql_inmemory

SQL

As we have described earlier, JDO allows access to many query languages to give the user full
flexibility over what they utilise. Sometimes an object-based query language (such as JDOQL) is not
considered suitable, maybe due to the lack of familiarity of the application developer with such a
query language. In the case where you are using an RDBMS it is sometimes desirable to query using
SQL. JDO standardises this as a valid query mechanism, and DataNucleus supports this.

o Please be aware that the SQL query that you invoke has to be valid for your
RDBMS, and that the SQL syntax differs across almost all RDBMS.

To utilise SQL syntax in queries, you create a Query as follows
Query q = pm.newQuery("javax.jdo.query.SQL", the_sql_query);

You have several forms of SQL queries, depending on what form of output you require.

* No candidate class and no result class - the result will be a List of Objects (when there is a
single column in the query), or a List of Object[]s (wWhen there are multiple columns in the

query)

» Candidate class specified, no result class - the result will be a List of candidate class objects,
or will be a single candidate class object (when you have specified "unique"). The columns of the
querys result set are matched up to the fields of the candidate class by name. You need to select
a minimum of the PK columns in the SQL statement.

* No candidate class, result class specified - the result will be a List of result class objects, or
will be a single result class object (when you have specified "unique"). Your result class has to
abide by the rules of JDO result classes (see Result Class specification) - this typically means
either providing public fields matching the columns of the result, or providing setters/getters
for the columns of the result.

* Candidate class and result class specified - the result will be a List of result class objects, or
will be a single result class object (when you have specified "unique"). The result class has to
abide by the rules of JDO result classes (see Result Class specification).

Setting candidate class

If you want to return instances of persistable types, then you can set the candidate class.

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT MY_ID, MY_NAME FROM
MYTABLE");

query.setClass(MyClass.class);

List<MyClass> results = query.executelist();

39

query.html#jdoql_resultclass
query.html#jdoql_resultclass

Unique results

If you know that there will only be a single row returned from the SQL query then you can set the
query as unique. Note that the query will return null if the SQL has no results.

Sometimes you know that the query can only every return 0 or 1 objects. In this case you can
simplify your job by adding

// Using traditional JDO Query API

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT MY_ID, MY_NAME FROM
MYTABLE");

query.setClass(MyClass.class);

query.setUnique(true);

MyClass obj = (MyClass) query.execute();

// Using JD03.2 Query API

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT MY_ID, MY_NAME FROM
MYTABLE");

query.setClass(MyClass.class);

MyClass obj = query.executeUnique();

Defining a result type

If you want to dump each row of the SQL query results into an object of a particular type then you
can set the result class.

// Using traditional JDO Query API

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT MY_ID, MY_NAME FROM
MYTABLE");

query.setResultClass(MyResultClass.class);

List<MyResultClass> results = (List<MyResultClass>) query.execute();

// Using JD03.2 Query API

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT MY_ID, MY_NAME FROM
MYTABLE");

List<MyResultClass> results = query.executeResultList(MyResultClass.class);

The Result Class has to meet certain requirements. These are

* Can be one of Integer, Long, Short, Float, Double, Character, Byte, Boolean, String,
java.math.BigInteger, java.math.BigDecimal, java.util.Date, java.sql.Date, java.sql.Time,
java.sql.Timestamp, or Object[]

* Can be a user defined class, that has either a constructor taking arguments of the same type as
those returned by the query (in the same order), or has a public put(Object, Object) method, or
public setXXX() methods, or public fields.

60

For example, if we are returning two columns like above, an int and a String then we define our
result class like this

public class MyResultClass

{
protected int id = 0;
protected String name = null;
public MyResultClass(int id, String name)
{
this.id = id;
this.name = name;
}
}

So here we have a result class using the constructor arguments. We could equally have provided a
class with public fields instead, or provided setXXX methods, or just provide a put method. They all
work in the same way.

SQL Syntax Checks

When an SQL query is a SELECT, and is returning instances of an persistable class, then it is
required to return the columns for the PK, version and discriminator (if applicable). DataNucleus
provides some checks that can be performed to ensure that these are selected. You can turn this
checking off by setting the persistence property datanucleus.query.sql.syntaxChecks to false.
Similarly you can turn them off on a query-by-query basis by setting the query hint
datanucleus.query.sql.syntaxChecks to false.

Inserting/Updating/Deleting

In strict JDO all SQL queries must begin "SELECT ...", and consequently it is not possible to execute
queries that change data. In DataNucleus we have an extension that allows this to be overridden; to
enable this you should specify the persistence property datanucleus.query.sql.allowAll as true,
and thereafter you just invoke your statements like this

Query q

= pm.newQuery("javax.jdo.query.SQL", "UPDATE MY_TABLE SET MY_COLUMN = ? WHERE
MY_ID = ?");

you then pass any parameters in as normal for an SQL query. If your query starts with "SELECT"
then it is invoked using preparedStatement.executeQuery(...). If your query starts with "UPDATE",
"INSERT", "MERGE", "DELETE" it is treated as a bulk update/delete query and is invoked using
preparedStatement.executeUpdate(...). All other statements will be invoked using
preparedStatement.execute(...) and true returned.

61

If your statement really needs to be executed differently to these basic rules then you should
look at contributing support for those statements to DataNucleus.

Parameters

In JDO SQL queries can have parameters but must be positional. This means that you do as follows

Query q = pm.newQuery("javax.jdo.query.SQL", "SELECT col1, col2 FROM MYTABLE WHERE
col3 = ? AND col4 = ? and colb = ?");
List results = q.setParameters(vall, val2, val3).executelist();

So we used traditional J]DBC form of parametrisation, using "?".
- .
== Extension

DataNucleus also supports two further variations. The first is called numbered parameters where
we assign numbers to them, so the previous example could have been written like this

Query q = pm.newQuery("javax.jdo.query.SQL", "SELECT col1, col2 FROM MYTABLE WHERE
col3 = ?1 AND col4 = ?2 and colb = ?1");
List results = q.setParameters(vall, val2).executelist();

so we can reuse parameters in this variation. The second variation is called named parameters
where we assign names to them, and so the example can be further rewritten like this

Query q = pm.newQuery("javax.jdo.query.SQL", "SELECT col1, col2 FROM MYTABLE WHERE
col3 = :firstVal AND col4 = :secondVal and col5 = :firstVal");

Map params = new HashMap();

params.put("firstVal", vall);

params.put("secondVal", vall);

List results = q.setNamedParameters(params).executelist();

Example 1 - Using SQL aggregate functions, without
candidate class

Here’s an example for getting the size of a table without a candidate class.

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT count(*) FROM MYTABLE");
List results = query.executelist();
Integer tableSize = (Integer) result.iterator().next();

Here’s an example for getting the maximum and miminum of a parameter without a candidate
class.

62

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT max(PARAM1), min(PARAM1) FROM
MYTABLE");

List results = query.executelist();

Object[] measures = (Object[])result.iterator().next();

Double maximum = (Double)measures[0];

Double minimum = (Double)measures[1];

Example 2 - Using SQL aggregate functions, with result
class

Here’s an example for getting the size of a table with a result class. So we have a result class of

public class TableStatistics
{

private int total;

public setTotal(int total);

So we define our query to populate this class

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT count(*) AS total FROM
MYTABLE");

List<TableStatistics> results = query.executeResultList(TableStatistics.class);
TableStatistics tableStats = result.iterator().next();

Each row of the results is of the type of our result class. Since our query is for an aggregate, there is
actually only 1 row.

Example 3 - Retrieval using candidate class

When we want to retrieve objects of a particular persistable class we specify the candidate class.
Here we need to select, as a minimum, the identity columns for the class.

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT MY_ID, MY_NAME FROM
MYTABLE");
query.setClass(MyClass.class);
List<MyClass> results = query.executelist();
Iterator resultsIter = results.iterator();
while (resultsIter.hasNext())
{
MyClass obj = resultsIter.next();
¥

63

class MyClass
{

String name;

<package name="mydomain.samples.sql">
<class name="MyClass" identity-type="datastore" table="MYTABLE">
<datastore-identity strategy="identity">
<column name="MY_ID"/>
</datastore-identity>
<field name="name" persistence-modifier="persistent">
<column name="MY_NAME"/>
</field>
</class>
</package>

Example 4 - Using parameters, without candidate class

Here’s an example for getting the number of people with a particular email address. You simply
add a "?" for all parameters that are passed in, and these are substituted at execution time.

Query query = pm.newQuery("javax.jdo.query.SQL", "SELECT count(*) FROM PERSON WHERE
EMAIL_ADDRESS = ?");

List results = query.setParameters("nobody@datanucleus.org").executelist();

Integer tableSize = (Integer) result.iterator().next();

Example 5 - Named Query

While "named" queries were introduced primarily for JDOQL queries, we can define "named"
queries for SQL also. So let’s take a Product class, and we want to define a query for all products
that are "sold out". We firstly add this to our MetaData

64

<package name="mydomain.samples.store">
<class name="Product" identity-type="datastore" table="PRODUCT">

<datastore-identity strategy="identity">
<column name="PRODUCT_ID"/>

</datastore-identity>

<field name="name" persistence-modifier="persistent">
<column name="NAME"/>

</field>

<field name="status" persistence-modifier="persistent">
<column name="STATUS"/>

</field>

<query name="SoldOut" language="javax.jdo.query.SQL">
SELECT PRODUCT_ID FROM PRODUCT WHERE STATUS == "Sold Out"
</query>
</class>
</package>

And then in our application code we utilise the query

Query q = pm.newNamedQuery(Product.class, "SoldOut");
List<Product> results = g.executelist();

65

Cassandra CQL

As we have described earlier, JDO allows access to many query languages to give the user full
flexibility over what they utilise. Sometimes an object-based query language (such as JDOQL) is not
considered suitable, maybe due to the lack of familiarity of the application developer with such a
query language. In the case where you are using Cassandra it is sometimes desirable to query using
CQL. JDO provides a mechanism to use this as a valid query mechanism, and DataNucleus supports
this.

To utilise CQL syntax in queries with Cassandra datastores, you create a Query as follows

Query q = pm.newQuery("CQL", "SELECT * FROM schemal.Employee");
// Fetch 10 Employee rows at a time
query.getFetchPlan().setFetchSize(10);
query.setResultClass(Employee.class);

List<Employee> results = (List)q.execute();

You can also query results as List<Object[]> without specifying a specific result type as shown
below.

// Find all employees

PersistenceManager persistenceManager = pmf.getPersistenceManager();
Query q = pm.newQuery("CQL", "SELECT * FROM schemal.Employee");

// Fetch all Employee rows as Object[] at a time.
query.getFetchPlan().setFetchSize(-1);

List<Object[]> results = (List)q.execute();

So we are utilising the JDO API to generate a query and passing in the Cassandra "CQL".

66

JPQL

As we have described earlier, JDO allows access to many query languages to give the user full
flexibility over what they utilise. It may be that the developers of your project are familiar with the
JPA query language JPQL. DataNucleus allows full support for this syntax.

a4 .
=== Extension

You would create and execute a JPQL query using the JDO API like this

Query q = pm.newQuery("JPQL", "SELECT p FROM Person p WHERE p.lastName = 'Jones'");
List results = (List)q.execute();

This finds all "Person" objects with surname of "Jones". You specify all details in the query.
You can find full details of the JPQL syntax in the JPQL Query Guide for JPA

Since you are using the JDO API here, there may be some parts of JPA mapping metadata that is not
available for use with JDO, so we note some known differences below.

Entity Name

In the example shown you note that we did not specify the full class name. We used Person p and
thereafter could refer to p as the alias. The Person is called the entity name and in JPA MetaData
this can be defined against each class in its definition. With JDO we don’t have this MetaData
attribute so we simply define the entity name as the name of the class omitting the package name.
So mydomain.samples.Person will have an entity name of Person.

Fetched Fields

By default a query will fetch fields according to their defined EAGER/LAZY setting, so fields like
primitives, wrappers, Dates, and 1-1/N-1 relations will be fetched, whereas 1-N/M-N fields will not
be fetched. JPQL allows you to include FETCH JOIN as a hint to include 1-N/M-N fields where
possible. All non-RDBMS datastores do respect this FETCH JOIN setting, since a collection/map is
stored in a single "column" in the object and so is readily retrievable. For RDBMS, we respect this in
some specific situations only.

Note that you can also make use of Fetch Groups to have fuller control over what is retrieved from
each query.

67

../jpa/query.html#jpql
persistence.html#fetch_groups

Stored Procedures

0 applicable to RDBMS.

JDO doesn’t include explicit support for stored procedures. However DataNucleus provides two
options for allowing use of stored procedures.

Using DataNucleus Stored Procedure API
E Extension

Obviously JDO allows potentially any "query language" to be invoked using its API. We can do the
following

Query q = pm.newQuery("STOREDPROC", "MY_TEST_SP_1");

Now on its own this will simply invoke the define stored procedure (MY _TEST SP_1) in the
datastore. Obviously we want more control than that, so this is where you use DataNucleus
specifics. Let’s start by accessing the internal stored procedure query

import org.datanucleus.api.jdo.JDOQuery;
import org.datanucleus.store.rdbms.query.StoredProcedureQuery;

StoredProcedureQuery spq = (StoredProcedureQuery)((JD0OQuery)q).getInternalQuery());

You should familiarise yourself with the StoredProcedureQuery API. Bear in mind that this
extends the normal Query API, and so you set parameters using that.

Now we can control things like parameters, and what is returned from the stored procedure query.
Let’s start by registering any parameters (IN, OUT, or INOUT) for our stored proc. In our example
we use named parameters, but you can also use positional parameters.

spq.registerParameter ("PARAM1", String.class, StoredProcQueryParameterMode.IN);
spq.registerParameter ("PARAM2", Integer.class, StoredProcQueryParameterMode.OUT);

Simple execution is like this (wWhere you omit the paramValueMap if you have no input parameters).
boolean hasResultSet = spq.executeWithMap(paramValueMap);

That method returns whether a result set is returned from the stored procedure (some return
results, but some return an update count, and/or output parameters). If we are expecting a result
set we then do

68

http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/query/StoredProcedureQuery.html

List results = (List)spq.getNextResults();

and if we are expecting output parameter values then we get them using the API too. Note again
that you can also access via position rather than name.

Object val = spq.getOutputParameterValue("PARAM2");

That summarises our stored procedure API It also allows things like multiple result sets for a
stored procedure, all using the StoredProcedureQuery API.

Using JDO SQL Query API to invoke stored procedures

In JDO all SQL queries must begin "SELECT ...", and consequently it is not possible to execute stored
procedures by default. In DataNucleus we have an extension that allows this to be overridden, to
call stored procedures.

o This is strongly discouraged now that we provide the mechanism above

To enable this you should specify the persistence property datanucleus.query.sql.allowAll as true
when creating the PMF. Thereafter you can invoke your stored procedures like this

Query q = pm.newQuery("javax.jdo.query.SQL", "EXECUTE sp_who");
((org.datanucleus.api.jdo.JID0Query)q).getInternalQuery().setType(org.datanucleus.store
.query.Query.SELECT);

Where "sp_who" is the stored procedure being invoked. The syntax of calling a stored procedure
differs across RDBMS, some require "CALL ..." and some "EXECUTE ..."; Go consult your manual.
Clearly the same rules will apply regarding the results of the stored procedure and mapping them
to any result class.

69

Query Cache

a .
== Extension

User Query Generic Compilation

JDOQL, JPQL Expression trees for each
query component.

SELECT FRON MyClass Datastore-independent

WHERE fidi == :param

JDO doesn’t currently define a mechanism for caching of queries. DataNucleus provides 3 levels of
caching

* Generic Compilation : when a query is compiled it is initially compiled generically into
expression trees. This generic compilation is independent of the datastore in use, so can be used
for other datastores. This can be cached.

» Datastore Compilation : after a query is compiled into expression trees (above) it is then
converted into the native language of the datastore in use. For example with RDBMS, it is
converted into SQL. This can be cached

* Results : when a query is run and returns objects of the candidate type, you can cache the
identities of the result objects.

Generic Query Compilation Cache

This cache is by default set to soft, meaning that the generic query compilation is cached using soft
references. This is set using the persistence property datanucleus.cache.queryCompilation.type.
You can also set it to strong meaning that strong references are used, or weak meaning that weak
references are used.

You can turn caching on/off (default = on) on a query-by-query basis by specifying the query
extension datanucleus.query.compilation.cached as true/false.

Datastore Query Compilation Cache

This cache is by default set to soft, meaning that the datastore query compilation is cached using
soft references. This is set using the persistence property
datanucleus.cache.queryCompilationDatastore.type. You can also set it to strong meaning that
strong references are used, or weak meaning that weak references are used.

You can turn caching on/off (default = on) on a query-by-query basis by specifying the query
extension datanucleus.query.compilation.cached as true/false. As a finer degree of control,
where cached results are used, you can omit the validation of object existence in the datastore by
setting the query extension datanucleus.query.resultCache.validateObjects.

70

#cache_genericcompilation
#cache_datastorecompilation
#cache_results

Query Results Cache

Query Result caching is, by default, turned OFF, since we have to select what is appropriate for the
vast majority of usages. You can turn caching on/off (default = off) by using the persistence
property datanucleus.query.results.cached set to (true|false), and likely better on a query-by-
query basis by specifying the query extension datanucleus.query.results.cached as (true | false).

This cache type is by default set to soft, meaning that the datastore query results are cached using
soft references. This is set using the persistence property datanucleus.cache.queryResults.type.
You can also set it to strong meaning that strong references are used, or weak meaning that weak
references are used.

You can specify persistence property datanucleus.cache.queryResults.cacheName to define the
name of the cache used for the query results cache.

You can specify persistence property datanucleus.cache.queryResults.expireMillis to specify the
expiry of caching of results, for caches that support it.

You can specify persistence property datanucleus.cache.queryResults.maxSize to define the
maximum number of queries that have their results cached, for caches that support it.

Obviously with a cache of query results, you don’t necessarily want to retain this cached over a
long period. In this situation you can evict results from the cache like this.

import org.datanucleus.api.jdo.JID0QueryCache;
import org.datanucleus.api.jdo.JDOPersistenceanagerFactory;

JDOQueryCache cache = ((JDOPersistenceManagerFactory)pmf).getQueryCache();

cache.evict(query);

which evicts the results of the specific query. The JDOQueryCache has more options
available should you need them - see its APIL

71

http://www.datanucleus.org/javadocs/api.jdo/latest/org/datanucleus/jdo/JDOQueryCache.html

	JDO Query Guide (v5.2)
	Table of Contents
	Query API
	Creating a query
	Closing a query
	Named Query
	Query Extensions
	Setting query parameters
	Compiling a query
	Executing a query
	Controlling the execution : FetchPlan
	ignoreCache(), setIgnoreCache()
	Control over locking of fetched objects
	Timeout on query execution for reads
	Timeout on query execution for writes
	Extension: Loading Large Result Sets at Commit()
	Extension: Caching of Results
	Extension: Size of Large Result Sets
	Extension: Type of Result Set (RDBMS)
	Extension: Result Set Control (RDBMS)

	JDOQL
	JDOQL Single-String syntax
	Candidate Class
	Filter
	Fields/Properties
	Methods
	Literals
	Parameters
	Variables
	Imports
	IF ELSE expressions
	Operators
	instanceof
	casting
	Subqueries
	Result clause
	Result Class
	Grouping of Results
	Ordering of Results
	Range of Results
	JDOQL In-Memory queries
	Update/Delete queries
	Deletion by Query
	Bulk Delete
	Bulk Update
	JDOQL Strictness
	JDOQL : SQL Generation for RDBMS

	JDOQL Typed
	Preparation
	Query Classes
	Query API - Filtering
	Query API - Ordering
	Query API - Methods
	Query API - Results
	Query API - Parameters
	Query API - Variables
	Query API - If-Then-Else
	Query API - Subqueries
	Query API - Candidates

	SQL
	Setting candidate class
	Unique results
	Defining a result type
	SQL Syntax Checks
	Inserting/Updating/Deleting
	Parameters
	Example 1 - Using SQL aggregate functions, without candidate class
	Example 2 - Using SQL aggregate functions, with result class
	Example 3 - Retrieval using candidate class
	Example 4 - Using parameters, without candidate class
	Example 5 - Named Query

	Cassandra CQL
	JPQL
	Entity Name
	Fetched Fields

	Stored Procedures
	Using DataNucleus Stored Procedure API
	Using JDO SQL Query API to invoke stored procedures

	Query Cache
	Generic Query Compilation Cache
	Datastore Query Compilation Cache
	Query Results Cache

