
JPA Getting Started Guide (v5.2)

Table of Contents
Key Points . 2

Understanding the JARs . 3

JPA Tutorial (v5.2). 4

Background . 4

Step 0 : Download DataNucleus AccessPlatform . 4

Step 1 : Take your model classes and mark which are persistable . 4

Step 2 : Define the 'persistence-unit' . 7

Step 3 : Enhance your classes . 8

Step 4 : Write the code to persist objects of your classes . 9

Step 5 : Run your application . 12

Step 6 : Controlling the schema . 14

Step 7 : Generate any schema required for your domain classes . 16

Any questions? . 16

Developing applications is, in general, a complicated task, involving many
components. Developing all of these components can be very time consuming.
The Java Persistence API (JPA) was designed to alleviate some of this time spent,
providing an API to allow java developers to persist object-oriented data into
relational databases (RDBMS).

DataNucleus JPA provides an implementation of this JPA standard, allowing you, the user, to persist
your object-oriented data to not only the RDBMS datastores the standard was intended for, but also
to a wide range of other datastores. These include popular map stores such as Cassandra and
HBase, the Neo4j graph store, spreadsheets in Excel or OpenDocument formats, JSON formatted
Amazon and Google Storage options, the popular MongoDB JSON-like document store, as well as
ubiquitous LDAP and more besides. DataNucleus was the first JPA provider to support persistence
to non-RDBMS datastores, and still has a wider range of supported stores than any other JPA
provider.

DataNucleus doesn’t purport to be the best solution to every problem. For example, where you
want to bulk persist large amounts of data then other solutions that get closer to the datastore API
would be more appropriate. Where you want to tailor the precise query sent to the datastore to
take advantage of some datastore-specific feature is another situation in which you may find a
hand-crafted solution more appropriate. That said, the range of capabilities of DataNucleus JPA
cover a wide range of use-cases, the barrier to entry for use of DataNucleus is very low. You do not
need to necessarily be an expert in all features of the chosen datastore to use it. It shields you from
the majority of the more routine handling, whilst still letting you have a high degree of control over
its behaviour and we hope that you benefit from its features.

1

Key Points
There are some key points to bear in mind when starting using JPA for java persistence.

• Your classes should be exactly that, your classes. DataNucleus imposes little to nothing on you.
Some JPA providers insist on a default constructor, but DataNucleus provides its enhancer to
add that automatically when not present.

• Your JPA entity classes need bytecode enhancing for use in the persistence process, but this can
be an automatic post-compilation step.

• To persist objects of classes you firstly need to define which classes are persistable, and how
they are persisted. Start under the JPA Mapping Guide

• Use of JPA requires an EntityManagerFactory to access the datastore.

• The persistence itself is controlled by an EntityManager and each object to be persisted will
have different lifecycle states that you need to have an understanding of.

• You retrieve objects either by their identity, or using a query. With JPA you can use JPQL, Native
(SQL), or Criteria query languages

• You will need javax.persistence as well as datanucleus-api-jpa, datanucleus-core and the
datanucleus-XXX jar for whichever datastore you are using.

2

enhancer.html
mapping.html
persistence.html#emf
persistence.html#em
persistence.html#lifecycle
persistence.html#_finding_an_object_by_its_identity
query.html
query.html#jpql
query.html#native
query.html#native
query.html#criteria

Understanding the JARs
DataNucleus has a modular architecture and you will need to make use of multiple JARs in your
application, as follows

• javax.persistence.jar : This is the JPA API. This is basically a collection of interfaces,
annotations and helper classes.

• datanucleus-api-jpa.jar : This is DataNucleus' implementation of the JPA API. It implements the
interfaces defined in javax.persistence.jar.

• datanucleus-core.jar : This provides the basic DataNucleus persistence mechanism, and is
required by all DataNucleus plugins.

• datanucleus-{datastore}.jar ({datastore} is 'rdbms', 'mongodb', 'cassandra', etc) : This provides
persistence to the specific type of datastore that the JAR is for.

• datanucleus-jpa-query.jar : This provides an annotation processor and is used by the JPA
Criteria mechanism to generate the JPA static metamodel classes used at runtime.

There are various additional JARs that can be used, providing support for additional (non-standard)
types, or features (such as third-party caching products).



DataNucleus jars make use of a plugin mechanism, whereby they have a file
plugin.xml that defines capabilities of each jar. Attempting to "merge" the
DataNucleus jars (without merging plugin.xml and MANIFEST.MF) can result in
problems and people are advised to not do this, or if they really want to then use
something like one-jar.

3

http://one-jar.sourceforge.net/

JPA Tutorial (v5.2)

Background
An application can be JPA-enabled via many routes depending on the development process of the
project in question. For example the project could use Eclipse as the IDE for developing classes. In
that case the project would typically use the Dali Eclipse plugin coupled with the DataNucleus
Eclipse plugin. Alternatively the project could use Ant, Maven or some other build tool. In this case
this tutorial should be used as a guiding way for using DataNucleus in the application. The JPA
process is quite straightforward.

• Step 0 : Download DataNucleus AccessPlatform

• Step 1 : Define their persistence definition using Meta-Data.

• Step 2 : Define the "persistence-unit"

• Step 3 : Compile your classes, and instrument them (using the DataNucleus enhancer).

• Step 4 : Write your code to persist your objects within the DAO layer.

• Step 5 : Run your application.

We will take this further with 2 optional steps, showing how you can control the generated schema,
and indeed how you generate the schema for your classes

• Step 6 : Controlling the schema

• Step 7 : Generate the database tables where your classes are to be persisted

The tutorial guides you through this. You can obtain the code referenced in this tutorial from
SourceForge (one of the files entitled "datanucleus-samples-jpa-tutorial-*").

Step 0 : Download DataNucleus AccessPlatform
You can download DataNucleus in many ways, but the simplest is to download the distribution ZIP
appropriate to your datastore (in this case RDBMS). You can do this from the SourceForge
DataNucleus download page When you open the zip you will find DataNucleus jars in the lib
directory, and dependency jars in the deps directory.

Step 1 : Take your model classes and mark which are
persistable
For our tutorial, say we have the following classes representing a store of products for sale.

4

https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://github.com/datanucleus/samples-jpa/tree/master/tutorial
tools.html#maven
tutorial.html#step0
tutorial.html#step1
tutorial.html#step2
tutorial.html#step3
tutorial.html#step4
tutorial.html#step5
tutorial.html#step6
tutorial.html#step7
https://sourceforge.net/projects/datanucleus/files/datanucleus-samples/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/
https://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

package org.datanucleus.samples.jpa.tutorial;

public class Inventory
{
 String name = null;
 Set<Product> products = new HashSet();

 public Inventory(String name)
 {
 this.name = name;
 }

 public Set<Product> getProducts() {return products;}
}

package org.datanucleus.samples.jpa.tutorial;

public class Product
{
 long id;
 String name = null;
 String description = null;
 double price = 0.0;

 public Product(String name, String desc, double price)
 {
 this.name = name;
 this.description = desc;
 this.price = price;
 }
}

5

package org.datanucleus.samples.jpa.tutorial;

public class Book extends Product
{
 String author=null;
 String isbn=null;
 String publisher=null;

 public Book(String name, String desc, double price, String author,
 String isbn, String publisher)
 {
 super(name,desc,price);
 this.author = author;
 this.isbn = isbn;
 this.publisher = publisher;
 }
}

So we have a relationship (Inventory having a set of Products), and inheritance (Product-Book).
Now we need to be able to persist objects of all of these types, so we need to define persistence for
them. There are many things that you can define when deciding how to persist objects of a type but
the essential parts are

• Mark the class as an Entity so it is visible to the persistence mechanism

• Identify which field(s) represent the identity of the object.

So this is what we do now. Note that we could define persistence using XML metadata, annotations.
In this tutorial we will use annotations.

package org.datanucleus.samples.jpa.tutorial;

@Entity
public class Inventory
{
 @Id
 String name = null;

 @OneToMany(cascade={CascadeType.PERSIST, CascadeType.MERGE, CascadeType.DETACH})
 Set<Product> products = new HashSet();
 ...
}

6

package org.datanucleus.samples.jpa.tutorial;

@Entity
@Inheritance(strategy=InheritanceType.JOINED)
public class Product
{
 @Id
 @GeneratedValue(strategy=GenerationType.TABLE)
 long id;

 ...
}

package org.datanucleus.samples.jpa.tutorial;

@Entity
public class Book extends Product
{
 ...
}

Note that we mark each class that can be persisted with @Entity and their primary key field(s) with
@Id. In addition we defined a valueStrategy for Product field id so that it will have its values
generated automatically. In this tutorial we are using application identity which means that all
objects of these classes will have their identity defined by the primary key field(s). You can read
more in the application identity guide when mapping your systems persistence.

Step 2 : Define the 'persistence-unit'
Writing your own classes to be persisted is the start point, but you now need to define which
objects of these classes are actually persisted. You do this via a file META-INF/persistence.xml at the
root of the CLASSPATH. Like this

7

mapping.html#application_identity

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd" version="2.2">

 <!-- JPA tutorial "unit" -->
 <persistence-unit name="Tutorial">
 <class>org.datanucleus.samples.jpa.tutorial.Inventory</class>
 <class>org.datanucleus.samples.jpa.tutorial.Product</class>
 <class>org.datanucleus.samples.jpa.tutorial.Book</class>
 <exclude-unlisted-classes/>
 <properties>
 <!-- For adding runtime properties. See later -->
 </properties>
 </persistence-unit>
</persistence>

Step 3 : Enhance your classes
DataNucleus relies on the classes that you want to persist be enhanced to implement the interface
Persistable. You could write your classes manually to do this but this would be laborious.
Alternatively you can use a post-processing step to compilation that "enhances" your compiled
classes, adding on the necessary extra methods to make them Persistable. There are several ways to
do this, most notably at post-compile, or at runtime. We use the post-compile step in this tutorial.
DataNucleus JPA provides its own byte-code enhancer for instrumenting/enhancing your classes
(in datanucleus-core.jar) and this is included in the DataNucleus AccessPlatform zip file
prerequisite.

To understand on how to invoke the enhancer you need to visualise where the various source and
metadata files are stored

src/main/java/org/datanucleus/samples/jpa/tutorial/Book.java
src/main/java/org/datanucleus/samples/jpa/tutorial/Inventory.java
src/main/java/org/datanucleus/samples/jpa/tutorial/Product.java
src/main/resources/META-INF/persistence.xml

target/classes/org/datanucleus/samples/jpa/tutorial/Book.class
target/classes/org/datanucleus/samples/jpa/tutorial/Inventory.class
target/classes/org/datanucleus/samples/jpa/tutorial/Product.class

when using Ant
lib/javax.persistence.jar
lib/datanucleus-core.jar
lib/datanucleus-api-jpa.jar

The first thing to do is compile your domain/model classes. You can do this in any way you wish, but

8

the download provides an Ant task, and a Maven project to do this for you.

Using Ant :
ant compile

Using Maven :
mvn compile

To enhance classes using the DataNucleus Enhancer, you need to invoke a command something like
this from the root of your project.

Using Ant :
ant enhance

Using Maven : (this is usually done automatically after the "compile" goal)
mvn datanucleus:enhance

Manually on Linux/Unix :
java -cp target/classes:lib/datanucleus-core.jar:lib/datanucleus-api-
jpa.jar:lib/javax.persistence.jar
 org.datanucleus.enhancer.DataNucleusEnhancer -api JPA -pu Tutorial

Manually on Windows :
java -cp target\classes;lib\datanucleus-core.jar;lib\datanucleus-api-
jpa.jar;lib\javax.persistence.jar
 org.datanucleus.enhancer.DataNucleusEnhancer -api JPA -pu Tutorial

This command enhances all classes defined in the persistence-unit "Tutorial". If you accidentally
omitted this step, at the point of running your application and trying to persist an object, you would
get a ClassNotPersistableException thrown. The use of the enhancer is documented in more detail in
the Enhancer Guide. The output of this step are a set of class files that represent persistable classes.

Step 4 : Write the code to persist objects of your
classes
Writing your own classes to be persisted is the start point, but you now need to define which
objects of these classes are actually persisted, and when. Interaction with the persistence
framework of JPA is performed via an EntityManager. This provides methods for persisting of
objects, removal of objects, querying for persisted objects, etc. This section gives examples of typical
scenarios encountered in an application.

The initial step is to obtain access to an EntityManager, which you do as follows

EntityManagerFactory emf = Persistence.createEntityManagerFactory("Tutorial");
EntityManager em = emf.createEntityManager();

9

enhancer.html

So we created an EntityManagerFactory for our "persistence-unit" called "Tutorial" which we
defined above. Now that the application has an EntityManager it can persist objects. This is
performed as follows

Transaction tx = em.getTransaction();
try
{
 tx.begin();

 Inventory inv = new Inventory("My Inventory");
 Product product = new Product("Sony Discman", "A standard discman from Sony",
49.99);
 inv.getProducts().add(product);
 em.persist(inv);

 tx.commit();
}
finally
{
 if (tx.isActive())
 {
 tx.rollback();
 }

 em.close();
}

Please note that the finally step is important in that it tidies up connections to the datastore and the
EntityManager. Now we want to retrieve some objects from persistent storage, so we will use a
"Query". In our case we want access to all Product objects that have a price below 150.00 and
ordering them in ascending order.

10

Transaction tx = em.getTransaction();
try
{
 tx.begin();

 Query q = pm.createQuery("SELECT p FROM Product p WHERE p.price < 150.00");
 List results = q.getResultList();
 Iterator iter = results.iterator();
 while (iter.hasNext())
 {
 Product p = (Product)iter.next();

 ... (use the retrieved object)
 }

 tx.commit();
}
finally
{
 if (tx.isActive())
 {
 tx.rollback();
 }

 em.close();
}

If you want to delete an object from persistence, you would perform an operation something like

11

Transaction tx = em.getTransaction();
try
{
 tx.begin();

 // Find and delete all objects whose last name is 'Jones'
 Query q = em.createQuery("DELETE FROM Person p WHERE p.lastName = 'Jones'");
 int numberInstancesDeleted = q.executeUpdate();

 tx.commit();
}
finally
{
 if (tx.isActive())
 {
 tx.rollback();
 }

 em.close();
}

Clearly you can perform a large range of operations on objects. We can’t hope to show all of these
here. Any good JPA book will provide many examples.

Step 5 : Run your application
To run your JPA-enabled application will require a few things to be available in the Java
CLASSPATH, these being

• The persistence.xml file (stored under META-INF/)

• Any ORM MetaData files for your persistable classes

• Any Datastore driver classes (e.g JDBC driver for RDBMS, Datastax driver for Cassandra, etc)
needed for accessing your datastore

• The javax.persistence.jar (defining the JPA API interface)

• The datanucleus-core.jar, datanucleus-api-jpa.jar and datanucleus-{datastore}.jar (for the
datastore you are using, e.g datanucleus-rdbms.jar when using RDBMS)

After that it is simply a question of starting your application and all should be taken care of.

In our case we firstly need to update the persistence.xml with the persistence properties defining
the datastore (the properties section of the file we showed earlier), like this

12

<properties>
 <property name="javax.persistence.jdbc.url" value="jdbc:h2:mem:nucleus1"/>
 <property name="javax.persistence.jdbc.user" value="sa"/>
 <property name="javax.persistence.jdbc.password" value=""/>
 <property name="datanucleus.schema.autoCreateAll" value="true"/>
</properties>

If we had wanted to persist to Cassandra then this would be

<properties>
 <property name="javax.persistence.jdbc.url" value="cassandra:"/>
 <property name="datanucleus.mapping.Schema" value="schema1"/>
 <property name="datanucleus.schema.autoCreateAll" value="true"/>
</properties>

or for MongoDB then this would be

<properties>
 <property name="javax.persistence.jdbc.url" value="mongodb:/nucleus1"/>
 <property name="datanucleus.schema.autoCreateAll" value="true"/>
</properties>

and so on. If you look at the persistence.xml of the downloadable sample project it has a full range
of different datastores listed to uncomment as required

You can access the DataNucleus Log file by specifying the logging configuration properties, and any
messages from DataNucleus will be output in the normal way. The DataNucleus log is a very
powerful way of finding problems since it can list all SQL etc actually sent to the datastore as well
as many other parts of the persistence process.

Consult the JPA Persistence Guide for the many other properties available for configuring
persistence.

13

../logging.html
persistence.html

Using Ant (you need the included persistence.xml to specify your database)
ant run

Using Maven:
mvn exec:java

Manually on Linux/Unix :
java -cp lib/javax.persistence.jar:lib/datanucleus-core.jar:lib/datanucleus-
rdbms.jar:lib/datanucleus-api-jpa.jar:lib/{datastore-driver}.jar:target/classes/:.
 org.datanucleus.samples.jpa.tutorial.Main

Manually on Windows :
java -cp lib\javax.persistence.jar;lib\datanucleus-core.jar;lib\datanucleus-
rdbms.jar;lib\datanucleus-api-jpa.jar;lib\{datastore-driver}.jar;target\classes\;.
 org.datanucleus.samples.jpa.tutorial.Main

Output :

DataNucleus Tutorial with JPA
======================
Persisting products
Product and Book have been persisted

Executing Query for Products with price below 150.00
> Book : JRR Tolkien - Lord of the Rings by Tolkien

Deleting all products from persistence

End of Tutorial

Step 6 : Controlling the schema
We haven’t yet looked at controlling the schema generated for these classes. Now let’s pay more
attention to this part by defining XML Metadata for the schema. In this example we define this in
XML to separate schema information from persistence information (though could equally have
used annotations if we really wanted to). This information is used either to match up to an existing
schema, or is used to generate a new schema (see #Step 7). So we define a file META-INF/orm.xml at
the root of the CLASSPATH. Like this

14

tutorial.html#step7

<?xml version="1.0" encoding="UTF-8" ?>
<entity-mappings>
 <description>DataNucleus JPA tutorial</description>
 <package>org.datanucleus.samples.jpa.tutorial</package>
 <entity class="org.datanucleus.samples.jpa.tutorial.Product" name="Product">
 <table name="JPA_PRODUCTS"/>
 <attributes>
 <id name="id">
 <generated-value strategy="TABLE"/>
 </id>
 <basic name="name">
 <column name="PRODUCT_NAME" length="100"/>
 </basic>
 <basic name="description">
 <column length="255"/>
 </basic>
 </attributes>
 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Book" name="Book">
 <table name="JPA_BOOKS"/>
 <attributes>
 <basic name="isbn">
 <column name="ISBN" length="20"></column>
 </basic>
 <basic name="author">
 <column name="AUTHOR" length="40"/>
 </basic>
 <basic name="publisher">
 <column name="PUBLISHER" length="40"/>
 </basic>
 </attributes>
 </entity>

 <entity class="org.datanucleus.samples.jpa.tutorial.Inventory" name="Inventory">
 <table name="JPA_INVENTORY"/>
 <attributes>
 <id name="name">
 <column name="NAME" length="40"></column>
 </id>
 <one-to-many name="products">
 <join-table name="JPA_INVENTORY_PRODUCTS">
 <join-column name="INVENTORY_ID_OID"/>
 <inverse-join-column name="PRODUCT_ID_EID"/>
 </join-table>
 </one-to-many>
 </attributes>
 </entity>
</entity-mappings>

15

Step 7 : Generate any schema required for your
domain classes
This step is optional, depending on whether you have an existing database schema. If you haven’t,
at this point you can add the property javax.persistence.schema-generation.database.action to
your persistence.xml and set it to create and this will create the schema for the specified classes
when the EntityManagerFactory is created. The first thing that you need is to update the
src/main/resources/META-INF/persistence.xml file with your database details, and this property.

For H2 these properties become

<properties>
 <property name="javax.persistence.jdbc.url" value="jdbc:h2:mem:nucleus1"/>
 <property name="javax.persistence.jdbc.user" value="sa"/>
 <property name="javax.persistence.jdbc.password" value=""/>

 <property name="javax.persistence.schema-generation.database.action"
value="create/>
</properties>

For other datastores, just look at the downloadable sample and uncomment as required.

Now we simply create the EntityManagerFactory as earlier. This will generate the required tables,
indexes, and foreign keys for the classes defined in the annotations and orm.xml Meta-Data file.

Any questions?
If you have any questions about this tutorial and how to develop applications for use with
DataNucleus please read the online documentation since answers are to be found there. If you
don’t find what you’re looking for go to Groups.IO or Gitter.

16

https://groups.io/g/datanucleus/
https://gitter.im/datanucleus/Lobby

	JPA Getting Started Guide (v5.2)
	Table of Contents
	Key Points
	Understanding the JARs
	JPA Tutorial (v5.2)
	Background
	Step 0 : Download DataNucleus AccessPlatform
	Step 1 : Take your model classes and mark which are persistable
	Step 2 : Define the 'persistence-unit'
	Step 3 : Enhance your classes
	Step 4 : Write the code to persist objects of your classes
	Step 5 : Run your application
	Step 6 : Controlling the schema
	Step 7 : Generate any schema required for your domain classes
	Any questions?

