@< DataNucleus

S

Datastores Guide (v5.0)

Table of Contents

RDBMS DatastOres . . .ottt ettt ettt e e e e e et et e e e e e e e e 4
DB e 5
17250) PP 6
SO SOV T . .ttt e 7
()= o] U= PP 7
S DS . e 7
SAP SQL ANYWRIETE . . oottt e e 8
HO QL DB ..ttt e 8
H e 8
00 4 01 9
POStgreS L .. e 10
PostgreSQL with POStGIS €XTEeNSION vvutt ittt ittt eaa 10
APaChe Derhy ..o o 11
o313)1 oo PP 12
NUOD B .ot 12
SAPDB/MAXDB . ..ttt e 12
RS0) 5 (PP 13
740100 1] P 13
PR DS . . ettt e e e e e 13
JDBC DIiVer PATAIMELEISttt ettt ettt ettt ettt ettt ettt 13
RDBMS : Statement Batching i 14

Cassandra DataStOresttt ittt ettt et e e e e 19
Queries : Cassandra CQL QUETIESttt ettt et 20

55 (&1 B D =Y - 1] () 1T PP 21

OOX ML DatastOreS. . o v ottt et et et et et e e e e e e e e e 22

(@00) B T Y- 1] (0 = 23
WOTKSheet HEaUerS. . ..ottt e et et et e e e i e e 23

DY P D - L 1] W0) T 25
Mapping : XML Datastore Mappinguuuuuunittt ettt eeeeaanns 25

JSON DaAtaStOTES .. oottt ettt et ittt i e 28
Mapping : HTTP MapPPINEGottt ittt ittt ettt ettt aaas 28
Mapping : Persistent ClasSesttt e 29

AMAZON S3 DaAtaSTOTES . . oottt ittt ettt et e e e e e 31
L)) <) 4 6T 31

Google Storage DatastOres uuu ittt 32

HBaASE DatastOr S . o ettt e ettt e e e e e e e 33
Field/Column Naming.ttt e e et e e 33

MetaData EXteIISIONS & o vttt ettt et e e e e e e e e e e e 34

|23 (2 =) 4 (o<1 37

MONEODB DatastOres.ottt et ettt e e e 38
Mapping : Embedded Persistable fields..........c.co oo e 39
Mapping : Embedded Collection elementscoiuuimiiiiinniiiiie i, 40
R TS . . .ot 41

INEOZ) DAtASTOTES ..o v ettt ettt ettt e e et e e e e e e e e e e e e e e 42
Persistence IMplementationttt et et 43
Query Implementation.ttt e 44

LDAP DatastOresS . . . oottt ittt ettt ittt et et e e 45
Datastore CONMMECTION . . . oo vttt ettt ettt e ettt et ettt iae s 45
L0 10 T3 o 1= 45
Mapping : LDAP Datastore MappPing.cvuun ettt et ie et ie et 45
Mapping : Relationships.ottt e 46
551 101 0] U1 J P 46
Known LImiItationsottt e 48
LDAP : Relationship Mapping by DNt e et 48
LDAP : Relationship Mapping by Attribute i e 52
LDAP : Relationship Mapping by Hierarchy (DEPRECATED)coiiiiiiiiiiinnennnnn.. 57
LDAP : Embedded ODjJeCtS . ..ottt ettt et et e e e e 61

NeoDatis DatastOresttt ettt ettt ettt 64
Datastore CONMMECTION . . .o v vttt ettt ettt et et et ettt it 64
L0 10 T3 o 1= 65
Queries : NeoDatis NatiVe QUETIESttt ittt ittt ettt 65
Queries : NeoDatis Criteria QUETIESttt ettt et eiae e, 65

KNOWN LIIMIEATIONS & v o v vttt ettt e e e e e e e e e e e e e e e et 66

The DataNucleus AccessPlatform is designed for flexibility to operate with any
type of datastore. We already support a very wide range of datastores and this
will only increase in the future. In this section you can find the specifics for
particular supported datastores over and above what was already addressed for
JDO and JPA persistence.

— RDBMS : tried and tested since the 1970s, relational databases form
PosgresQL MysgL jlan integral component of many systems. They incorporate optimised
!’L“;mf? w8 Pquerying mechanisms, yet also can suffer from object-relational
Orck Informix fimpedance mismatch in some situations. They also require an extra
level of configuration to map from objects across to relational

tables/columns.

* HBase : HBase is a map-based datastore originated within Hadoop,

Map based
Ehsmindpra iz fifollowing the model of BigTable. * Cassandra : Cassandra is a

istributed robust clustered datastore.

Neo4] : plugin providing persistence to the Neo4j graph store

#rdbms
#hbase
#cassandra
#neo4j

St * Open Document Format (ODF) : ODF is an international standard
XL opf fldocument format, and its spreadsheets provide a widely used form
gmﬁt or publishing of data, making it available to other groups. * Excel

(XLS) : Excel spreadsheets provide a widely used format allowing

publishing of data, making it available to other groups (XLS format). *
Excel (OOXML) : Excel spreadsheets provide a widely used format
allowing publishing of data, making it available to other groups
(OOXML format). * XML : XML defines a document format and, as
such, is a key data transfer medium.

* JSON : another format of document for exchange, in this case with
articular reference to web contexts. * Amazon S3 : Amazon Simple
torage Service. * Google Storage : Google Storage.

MongoDB : plugin providing persistence to the MongoDB NoSQL

Doc based
MongaDB datastore

* LDAP : an internet standard datastore for indexed data that is not
changing significantly. * NeoDatis : an open source object datastore.
ast persistence of large object graphs, without the necessity of any
bject-relational mapping (no longer supported, use DataNucleus
5.0).

#odf
#excel
#excel
#ooxml
#xml
#json
#amazons3
#googlestorage
#mongodb
#ldap
../extensions/extensions.html#store_manager

If you have a requirement for persistence to some other datastore, then it would
likely be easily provided by creation of a DataNucleus StoreManager. Please
contact us so that you can provide this and contribute it back to the community.

RDBMS Datastores

: . Microsoft® '
MHS& jMO”ODB pes SQL Server ORACLE

HSGQL (@
NSyase Shsine

POstGIS

 ZEEE | DB2.
\

NUO

DataNucleus supports persisting objects to RDBMS datastores (using the datanucleus-rdbms plugin).
It supports the vast majority of RDBMS products available today. DataNucleus communicates with
the RDBMS datastore using JDBC. RDBMS systems accept varying standards of SQL and so
DataNucleus will support particular RDBMS/JDBC combinations only, though clearly we try to
support as many as possible.

The jars required to use DataNucleus RDBMS persistence are datanucleus-core, datanucleus-api-jdo
/datanucleus-api-jpa, datanucleus-rdbms and JDBC driver.

There are tutorials available for use of DataNucleus with RDBMS for JDO and for JPA

By default when you create a PersistenceManagerFactory or EntityManagerFactory to connect to a
particular datastore DataNucleus will automatically detect the datastore adapter to use and will use
its own internal adapter for that type of datastore. If you find that either DataNucleus has
incorrectly detected the adapter to use, you can override the default behaviour using the
persistence property datanucleus.rdbms.datastoreAdapterClassName.

Using an RDBMS datastore DataNucleus allows you to query the objects in the datastore using the
following

* JDOQL - language based around the objects that are persisted and using Java-type syntax

* SQL - language found on alomst all RDBMS.

* JPQL - language defined in the JPA specification which closely mirrors SQL.

The following RDBMS have support built in to DataNucleus. Click on the one of interest to see
details of any provisos for its support, as well as the JDBC connection information

https://github.com/datanucleus/datanucleus-rdbms
../jdo/tutorial.html
../jpa/tutorial.html
../jdo/query.html#jdoql
../jdo/query.html#sql
../jpa/query.html#jpql

* MySQL/MariaDB

» PostgreSQL Database
» PostgreSQL+PostGIS Database
* HSQL DB

» H2 Database

* SQLite

* Apache Derby

* Microsoft SQLServer
* Sybase

* SQL Anywhere

* Oracle

» IBM DB2

* IBM Informix

* Firebird

* NuoDB

* SAPDB/MaxDB

* Virtuoso

» Pointbase

* Oracle TimesTen
W Plugin

Note that if your RDBMS is not listed or currently supported you can easily write your own
Datastore Adapter for it raise an issue in GitHub when you have it working and attach a patch to
contribute it. Similarly if you are using an adapter that has some problem on your case you could
use the same plugin mechanism to override the non-working feature.

DB2

To specify DB2 as your datastore, you will need something like the following specifying (where
"mydb1" is the name of the database)

datanucleus.ConnectionDriverName=com.ibm.db2.jcc.DB2Driver
datanucleus.ConnectionURL=jdbc:db2://1localhost:50002/mydb1
datanucleus.ConnectionUserName="username’ (e.g db2inst1)
datanucleus.ConnectionPassword="password’

With DB2 Express-C v9.7 you need to have db2jcc.jar and db2jcc_license_cu.jar in the CLASSPATH.

#mysql
#postgresql
#postgis
#hsqldb
#h2
#sqlite
#derby
#sqlserver
#sybase
#sqlanywhere
#oracle
#db2
#informix
#firebird
#nuodb
#maxdb
#virtuoso
#pointbase
#timesten
../extensions/extensions.html#rdbms_datastore_adapter

MySQL

MySQL and its more developed drop in replacement MariaDB are supported as an RDBMS
datastore by DataNucleus with the following provisos

* You can set the table (engine) type for any created tables via persistence property
datanucleus.rdbms.mysql.engineType or by setting the extension metadata on a class with
key mysql-engine-type. The default is INNODB

* You can set the collation type for any created tables via persistence property
datanucleus.rdbms.mysql.collation or by setting the extension metadata on a class with key
mysql-collation

* You can set the character set for any created tables via persistence property
datanucleus.rdbms.mysql.characterSet or by setting the extension metadata on a class with
key mysql-character-set

* JDOQL.isEmpty()/contains() will not work in MySQL 4.0 (or earlier) since the query uses EXISTS
and that is only available from MySQL 4.1

* MySQL on Windows MUST specify datanucleus.identifier.case as "LowerCase" since the MySQL
server stores all identifiers in lowercase BUT the mysql-connector-java JDBC driver has a bug
(in versions up to and including 3.1.10) where it claims that the MySQL server stores things in
mixed case when it doesnt

* MySQL 3.* will not work reliably with inheritance cases since DataNucleus requires UNION and
this doesn’t exist in MySQL 3.*

* MySQL before version 4.1 will not work correctly on JDOQL Collection.size(), Map.size()
operations since this requires subqueries, which are not supported before MySQL 4.1.

* If you receive an error "Incorrect arguments to mysql_stmt_execute" then this is a bug in
MySQL and you need to update your JDBC URL to append "?useServerPrepStmts=false".

* MySQL throws away the milliseconds on a Date and so cannot be used reliably for Optimistic
locking using strategy "date-time" (use "version" instead)

* You can specify "BLOB", "CLOB" JDBC types when using MySQL with DataNucleus but you must
turn validation of columns OFF. This is because these types are not supported by the MySQL
JDBC driver and it returns them as LONGVARBINARY/LONGVARCHAR when querying the
column type

To specify MySQL as your datastore, you will need something like the following specifying
(replacing 'db-name’' with name of your database etc)

datanucleus.ConnectionDriverName=com.mysql.jdbc.Driver
datanucleus.ConnectionURL=jdbc:mysql:// host': 'port'/"'db-name’
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

http://www.mysql.com
https://mariadb.org

SQL Server

Microsoft SQLServer is supported as an RDBMS datastore by DataNucleus with the following
proviso

* SQLServer 2000 does not keep accuracy on datetime datatypes. This is an SQLServer 2000 issue.
In order to keep the accuracy when storing java.util. Date java types, use int datatype.

To specify SQLServer as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

Microsoft SQLServer 2005 JDBC Driver (Recommended)

datanucleus.ConnectionDriverName=com.microsoft.sqlserver.jdbc.SQLServerDriver
datanucleus.ConnectionURL=jdbc:sqlserver:// host': 'port';DatabaseName="db-
name';SelectMethod=cursor

datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

Microsoft SQLServer 2000 JDBC Driver

datanucleus.ConnectionDriverName=com.microsoft.jdbc.sqlserver.SQLServerDriver
datanucleus.ConnectionURL=jdbc:microsoft:sqlserver:// host"': 'port';DatabaseName="db-
name';SelectMethod=cursor

datanucleus.ConnectionUserName="user-name'

datanucleus.ConnectionPassword="password’

Oracle

To specify Oracle as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc) ... you can also use 'oci' instead of 'thin'
depending on your driver.

datanucleus.ConnectionDriverName=oracle.jdbc.driver.OracleDriver
datanucleus.ConnectionURL=jdbc:oracle:thin:@"host':'port':'db-name’
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

Sybase

To specify Sybase as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

http://www.microsoft.com/sql
http://www.oracle.com/database/
http://www.sybase.com

datanucleus.ConnectionDriverName=com.sybase.jdbc2.jdbc.SybDriver
datanucleus.ConnectionURL=jdbc:sybase:Tds: "host':'port'/'db-name’
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

SAP SQL Anywhere

To specify SQL Anywhere as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=sybase.jdbc4.sqlanywhere.IDriver
datanucleus.ConnectionURL=jdbc:sqlanywhere:uid=DBA;pwd=sql;eng=demo
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

HSQLDB

HSQLDB is supported as an RDBMS datastore by DataNucleus with the following proviso

» Use of batched statements is disabled since HSQLDB has a bug where it throws exceptions
"batch failed" (really informative). Still waiting for this to be fixed in HSQLDB

» Use of JDOQL/JPQL subqueries cannot be used where you want to refer back to the parent query
since HSQLDB up to and including version 1.8 don’t support this.

To specify HSQL (1.x) as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=org.hsqldb.jdbcDriver
datanucleus.ConnectionURL=jdbc:hsqldb:hsql:// host':'port'/'db-name’
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

Note that in HSQLDB v2.x the driver changes to org.hsqldb.jdbc.JDBCDriver

H2

H2 is supported as an RDBMS datastore by DataNucleus.

To specify H2 as your datastore, you will need something like the following specifying (replacing
'db-name' with name of your database etc)

http://www.sap.com/pc/tech/database/software/sybase-sql-anywhere/index.html
http://hsqldb.org
http://www.h2database.com

datanucleus.ConnectionDriverName=org.h2.Driver
datanucleus.ConnectionURL=jdbc:h2:'db-name’
datanucleus.ConnectionUserName=sa
datanucleus.ConnectionPassword=

Informix

Informix is supported as an RDBMS datastore by DataNucleus.

To specify Informix as your datastore, you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=com.informix.jdbc.IfxDriver
datanucleus.ConnectionURL=jdbc:informix-

sqli://[{ip|host}:port][/dbname]: INFORMIXSERVER=servername[;name=value[;name=value]...
]

datanucleus.ConnectionUserName=informix
datanucleus.ConnectionPassword=password

For example

datanucleus.ConnectionDriverName=com.informix.jdbc.IfxDriver
datanucleus.ConnectionURL=jdbc:informix-

sqli://192.168.254.129:9088: informixserver=demo_on;database=buf_log_db
datanucleus.ConnectionUserName=informix
datanucleus.ConnectionPassword=password

Note that some database logging options in Informix do not allow changing autoCommit
dinamically. You need to rebuild the database to support it. To rebuild the database refer to
Informix documention, but as example,

run $INFORMIXDIR\bin\dbaccess and execute the command "CREATE DATABASE mydb WITH
BUFFERED LOG".

INDEXOF: Informix 11.x does not have a function to search a string in another string. DataNucleus
defines a user defined function, DATANUCLEUS_STRPOS, which is automatically created on startup.
The SQL for the UDF function is:

create function DATANUCLEUS_STRPOS(str char(40),search char(40),from smallint)
returning smallint

define 1,pos,lenstr,lensearch smallint;

let lensearch = length(search);

let lenstr = length(str);

if lenstr=0 or lensearch=0 then return @; end if;
let pos=-1;

for i=1+from to lenstr
if substr(str,i,lensearch)=search then

let pos=i;
exit for;
end if;
end for;

return pos;
end function;

PostgreSQL

To specify PostgreSQL as your datastore, you will need something like the following specifying
(replacing 'db-name’ with name of your database etc)

datanucleus.ConnectionDriverName=org.postgresql.Driver
datanucleus.ConnectionURL=jdbc:postgresql://" host":"port'/'db-name’
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

PostgreSQL with PostGIS extension

To specify PostGIS as your datastore, you will need to decide first which geometry library you want
to use and then set the connection url accordingly.

For the PostGIS JDBC geometries you will need something like the following specifying (replacing
'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=org.postgresql.Driver
datanucleus.ConnectionURL=jdbc:postgresql:// host':'port'/"'db-name’
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

For Oracle’s JGeometry you will need something like the following specifying (replacing 'db-name’
with name of your database etc)

10

http://www.postgresql.org
http://www.postgis.org

datanucleus.ConnectionDriverName=org.postgresql.Driver
datanucleus.ConnectionURL=jdbc:postgres_jgeom://'host':'port'/'db-name’
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

For the JTS (Java Topology Suite) geometries you will need something like the following specifying
(replacing 'db-name' with name of your database etc)

datanucleus.ConnectionDriverName=org.postgresql.Driver
datanucleus.ConnectionURL=jdbc:postgres_jts://'host':'port'/"'db-name’
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

Apache Derby

To specify Apache Derby as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

datanucleus.ConnectionDriverName=org.apache.derby.jdbc.EmbeddedDriver
datanucleus.ConnectionURL=jdbc:derby: 'db-name';create=true
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

Above settings are used together with the Apache Derby in embedded mode. The below settings are
used in network mode, where the default port number is 1527.

datanucleus.ConnectionDriverName=org.apache.derby.jdbc.ClientDriver
datanucleus.ConnectionURL=jdbc:derby:// "hostname': 'portnumber'/'db-name';create=true
datanucleus.ConnectionUserName="user-name'

datanucleus.ConnectionPassword="password’

org.apache.derby.jdbc.ClientDriver

ASCII: Derby 10.1 does not have a function to convert a char into ascii code. DataNucleus needs
such function to converts chars to int values when performing queries converting chars to ints.
DataNucleus defines a user defined function, DataNucleus_ASCII, which is automatically created on
startup. The SQL for the UDF function is:

DROP FUNCTION NUCLEUS_ASCII;

CREATE FUNCTION NUCLEUS_ASCII(C CHAR(1)) RETURNS INTEGER

EXTERNAL NAME 'org.datanucleus.store.rdbms.adapter.DerbySQLFunction.ascii'
CALLED ON NULL INPUT

LANGUAGE JAVA PARAMETER STYLE JAVA;

11

http://db.apache.org/derby/

String.matches(pattern): When pattern argument is a column, DataNucleus defines a function
that allows Derby 10.1 to perform the matches function. The SQL for the UDF function is:

DROP FUNCTION NUCLEUS_MATCHES;

CREATE FUNCTION NUCLEUS_MATCHES(TEXT VARCHAR(800@), PATTERN VARCHAR(800@)) RETURNS
INTEGER

EXTERNAL NAME 'org.datanucleus.store.rdbms.adapter.DerbySQLFunction.matches'
CALLED ON NULL INPUT

LANGUAGE JAVA PARAMETER STYLE JAVA;

Firebird

Firebird is supported as an RDBMS datastore by DataNucleus with the proviso that

* Auto-table creation is severely limited with Firebird. In Firebird, DDL statements are not auto-
committed and are executed at the end of a transaction, after any DML statements. This makes
"on the fly" table creation in the middle of a DML transaction not work. You must make sure
that "autoStartMechanism" is NOT set to "SchemaTable" since this will use DML. You must also
make sure that nobody else is connected to the database at the same time. Don’t ask us why
such limitations are in a RDBMS, but then it was you that chose to use it ;-)

To specify Firebird as your datastore, you will need something like the following specifying
(replacing 'db-name’ with filename of your database etc)

datanucleus.ConnectionDriverName=org.firebirdsql.jdbc.FBDriver
datanucleus.ConnectionURL=jdbc:firebirdsql://localhost/'db-name’
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

NuoDB

To specify NuoDB as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

datanucleus.ConnectionDriverName=com.nuodb.jdbc.Driver
datanucleus.ConnectionURL=jdbc:com.nuodb://1localhost/ " db-name'
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’
datanucleus.Schema={my-schema-name}

SAPDB/MaxDB

To specify SAPDB/MaxDB as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

12

http://www.firebirdsql.org

datanucleus.ConnectionDriverName=com.sap.dbtech.jdbc.DriverSapDB
datanucleus.ConnectionURL=jdbc:sapdb://localhost/'db-name’
datanucleus.ConnectionUserName="user-name'
datanucleus.ConnectionPassword="password’

SQLite
SQLite is supported as an RDBMS datastore by DataNucleus with the proviso that

* When using sequences, you must set the persistence property
datanucleus.valuegeneration.transactionAttribute to UsePM

To specify SQLite as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

datanucleus.ConnectionDriverName=org.sqlite.JDBC
datanucleus.ConnectionURL=jdbc:sqlite: 'db-name’
datanucleus.ConnectionUserName=
datanucleus.ConnectionPassword=

Virtuoso

To specify Virtuoso as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

datanucleus.ConnectionDriverName=virtuoso.jdbc.Driver
datanucleus.ConnectionURL=jdbc:virtuoso://127.0.0.1/{dbname}
datanucleus.ConnectionUserName=
datanucleus.ConnectionPassword=

Pointbase

To specify Pointbase as your datastore, you will need something like the following specifying
(replacing 'db-name' with filename of your database etc)

datanucleus.ConnectionDriverName=com.pointbase.jdbc.jdbcUniversalDriver
datanucleus.ConnectionURL=jdbc:pointbase://127.0.0.1/{dbname}
datanucleus.ConnectionUserName=

datanucleus.ConnectionPassword=

JDBC Driver parameters

If you need to pass additional parameters to the JDBC driver you can append these to the end of the

13

http://www.sqlite.org/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
http://docs.oracle.com/cd/E13218_01/wlp/docs92/db/pointbase.html#wp1058500

datanucleus.ConnectionURL. For example,

datanucleus.ConnectionURL=jdbc:mysql://localhost?useUnicode=true&characterEncoding
=UTF-8

RDBMS : Statement Batching
e rtension

When changes are required to be made to an underlying RDBMS datastore, statements are sent via
JDBC. A statement is, in general, a single SQL command, and is then executed. In some
circumstances the statements due to be sent to the datastore are the same JDBC statement several
times. In this case the statement can be batched. This means that a statement is created for the SQL,
and it is passed to the datastore with multiple sets of values before being executed. When it is
executed the SQL is executed for each of the sets of values. DataNucleus allows statement batching
under certain circumstances.

The maximum number of statements that can be included in a batch can be set via a persistence
property datanucleus.rdbms.statementBatchLimit. This defaults to 50. If you set it to -1 then
there is no maximum limit imposed. Setting it to 0 means that batching is turned off.

It should be noted that while batching sounds essential, it is only of any possible use when the
exact same SQL is required to be executed more than 1 times in a row. If a different SQL
needs executing between 2 such statements then no batching is possible anyway.. Let’s take an
example

INSERT INTO MYTABLE VALUES(?,7,7,7)
INSERT INTO MYTABLE VALUES(?,7,7,7)
SELECT ID, NAME FROM MYOTHERTABLE WHERE VALUE=?
INSERT INTO MYTABLE VALUES(?,7,7,7)
SELECT ID, NAME FROM MYOTHERTABLE WHERE VALUE=?

In this example the first two statements can be batched together since they are identical and
nothing else separates them. All subsequent statements cannot be batched since no two identical
statements follow each other.

The statements that DataNucleus currently allows for batching are

* Insert of objects. This is not enabled when objects being inserted are using identity value
generation strategy

* Delete of objects

* Insert of container elements/keys/values

* Delete of container elements/keys/values

Please note that if using MySQL, you should also specify the connection URL with the
argument rewriteBatchedStatements=true since MySQL won’t actually batch without this

14

RDBMS : Datastore Schema API
I.Emrrsinn

JDO/JPA are APIs for persisting and retrieving objects to/from datastores. They don’t provide a way
of accessing the schema of the datastore itself (if it has one). In the case of RDBMS it is useful to be
able to find out what columns there are in a table, or what data types are supported for example.
DataNucleus Access Platform provides an API for this.

The first thing to do is get your hands on the DataNucleus StoreManager and from that the
StoreSchemaHandler. You do this as follows

import org.datanucleus.api.jdo.JDOPersistenceManagerFactory;
import org.datanucleus.store.StoreManager;

import org.datanucleus.store.schema.StoreSchemaHandler;
[assumed to have "pmf"]

StoreManager storeMgr = ((JDOPersistenceManagerFactory)pmf).getStoreManager();
StoreSchemaHandler schemaHandler = storeMgr.getSchemaHandler();

So now we have the StoreSchemaHandler what can we do with it? Well start with the javadoc for
the implementation that is used for RDBMS

Datastore Types Information

So we now want to find out what JDBC/SQL types are supported for our RDBMS. This is simple.

import org.datanucleus.store.rdbms.schema.RDBMSTypesInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();
RDBMSTypesInfo typesInfo = schemaHandler.getSchemaData(conn, "types");

As you can see from the javadocs for RDBMSTypesinfo |Javadec] we can access the JDBC types
information via the "children". They are keyed by the JDBC type number of the JDBC type (see
java.sql.Types). So we can just iterate it

15

http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSSchemaHandler.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTypesInfo.html

Iterator jdbcTypesIter = typesInfo.getChildren().values().iterator();
while (jdbcTypesIter.hasNext())

{
JDBCTypeInfo jdbcType = (JDBCTypeInfo)jdbcTypesIter.next();

// Each JDBCTypelInfo contains SQLTypelInfo as its children, keyed by SQL name
Iterator sqlTypesIter = jdbcType.getChildren().values().iterator();
while (sqlTypesIter.hasNext())

{
SQLTypeInfo sqlType = (SQLTypeInfo)sqlTypesIter.next();
. inspect the SQL type info

Column information for a table

Here we have a table in the datastore and want to find the columns present. So we do this

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();
RDBMSTableInfo tableInfo = schemaHandler.getSchemaData(conn, "columns",
new Object[] {catalogName, schemaName, tableName});

As you can see from the javadocs for RDBMSTableInfo [Javadec] we can access the columns
information via the "children".

Iterator columnsIter = tableInfo.getChildren().iterator();
while (columnsIter.hasNext())

{
RDBMSColumnInfo colInfo = (RDBMSColumnInfo)columnsIter.next();

Index information for a table

Here we have a table in the datastore and want to find the indices present. So we do this

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;
Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();

RDBMSTableIndexInfo tableInfo = schemaHandler.getSchemaData(conn, "indices",
new Object[] {catalogName, schemaName, tableName});

16

http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableInfo.html

As you can see from the javadocs for RDBMSTableIndexInfo [Javadec] we can access the index
information via the "children".

Iterator indexIter = tableInfo.getChildren().iterator();
while (indexIter.hasNext())

{
IndexInfo idxInfo = (IndexInfo)indexIter.next();

ForeignKey information for a table

Here we have a table in the datastore and want to find the FKs present. So we do this

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();
RDBMSTableFKInfo tableInfo = schemaHandler.getSchemaData(conn, "foreign-keys",
new Object[] {catalogName, schemaName, tableName});

As you can see from the javadocs for RDBMSTableFKInfo we can access the foreign-key
information via the "children".

Iterator fkIter = tableInfo.getChildren().iterator();
while (fkIter.hasNext())

{
ForeignKeyInfo fkInfo = (ForeignKeyInfo)fkIter.next();

PrimaryKey information for a table

Here we have a table in the datastore and want to find the PK present. So we do this

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;
Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();

RDBMSTablePKInfo tableInfo = schemaHandler.getSchemaData(conn, "primary-keys",
new Object[] {catalogName, schemaName, tableName});

As you can see from the javadocs for RDBMSTablePKInfo we can access the foreign-key
information via the "children".

17

http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableIndexInfo.htm
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableFKInfo.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTablePKInfo.html

Iterator pkIter = tableInfo.getChildren().iterator();
while (pkIter.hasNext())

{
PrimaryKeyInfo pkInfo = (PrimaryKeyInfo)pkIter.next();

18

Cassandra Datastores

Cassandra

DataNucleus supports a limited for of persisting/retrieving objects to/from Cassandra datastores
(using the datanucleus-cassandra plugin, which utilises the DataStax Java driver). Simply specify
your "connectionURL" as follows

datanucleus.ConnectionURL=cassandra:[{host1}[:{port}] [,{host2} [,{host3}]]]

where it will create a Cassandra cluster with contact points of hostl (host2, host3 etc), and if the
port is specified on the first host then will use that as the port (no port specified on alternate hosts).

For example, to connect to a local server

datanucleus.ConnectionURL=cassandra:

The jars required to use DataNucleus Cassandra persistence are datanucleus-core, datanucleus-api-
jdo/datanucleus-api-jpa, datanucleus-cassandra and cassandra-driver-core.

There are tutorials available for use of DataNucleus with Cassandra for JDO and for JPA
Things to bear in mind with Cassandra usage :-

e Creation of a PMF/EMF will create a Cluster. This will be closed then the PMF/EMF is closed.
* Any PM/EM will use a single Session, by default, shared amongst all PM/EMs.

 If you specify the persistence property datanucleus.cassandra.sessionPerManager to true
then each PM/EM will have its own Session object.

» Cassandra doesn’t use transactions, so any JDO/JPA transaction operation is a no-op (i.e will be
ignored).

* This uses Cassandra 3.x (and CQL v3.x), not Thrift (like the previous unofficial attempts at a
datanucleus-cassandra plugin used)

» Specify persistence property datanucleus.cassandra.metrics to enable/disable metrics

» Specify persistence property datanucleus.cassandra.compression to enable/disable
compression

* Specify persistence property datanucleus.cassandra.ssl to enable/disable SSL

» Specify persistence property datanucleus.cassandra.socket.readTimeoutMillis to set the
timeout for reads (in ms)

* Specify persistence property datanucleus.cassandra.socket.connectTimeoutMillis to set the

19

https://github.com/datanucleus/datanucleus-cassandra
../jdo/tutorial.html
../jpa/tutorial.html

timeout for connecting (in ms)
* You need to specify the "schema" (datanucleus.mapping.Schema)

* Queries are evaluated in-datastore when they only have (indexed) members and literals and
using the operators ==, I=, >, >=, <, « &&, | |.

* You can query the datastore using JDOQL, JPQL, or CQL

Queries : Cassandra CQL Queries

O If you choose to use Cassandra CQL Queries then these are not portable to any
other datastore. Use JDOQL/JPQL for portability

Cassandra provides the CQL query language. To take a simple example using the JDO API

// Find all employees

PersistenceManager persistenceManager = pmf.getPersistenceManager();
Query q = pm.newQuery("CQL", "SELECT * FROM schemal.Employee");

// Fetch 10 Employee rows at a time
query.getFetchPlan().setFetchSize(10);
query.setResultClass(Employee.class);

List<Employee> results = (List)q.execute();

You can also query results as List<Object[]> without specifying a specific result type as shown
below.

// Find all employees

PersistenceManager persistenceManager = pmf.getPersistenceManager();
Query q = pm.newQuery("CQL", "SELECT * FROM schemal.Employee");

// Fetch all Employee rows as Object[] at a time.
query.getFetchPlan().setFetchSize(-1);

List<Object[]> results = (List)q.execute();

So we are utilising the JDO API to generate a query and passing in the Cassandra "CQL".

If you wanted to use CQL with the JPA API, you would do

// Find all employees
Query q = em.createNativeQuery("SELECT * FROM schemal.Employee", Employee.class);
List<Employee> results = g.getResultlList();

Note that the last argument to createNativeQuery is optional and you would get List<Object[]>
returned otherwise.

20

../jdo/query.html#jdoql
../jpa/query.html#jpql
#cassandra_native

Excel Datastores

¢

DataNucleus supports persisting/retrieving objects to/from Excel documents (using the datanucleus-
excel plugin, which makes use of the Apache POI project). Simply specify your "connectionURL" as
follows

datanucleus.ConnectionURL=excel:file:myfile.x1s

replacing myfile.xls with your filename, which can be absolute or relative. This connects to a file
on your local machine. You then create your PMF/EMF as normal and use JDO/JPA as normal.

The jars required to use DataNucleus Excel persistence are datanucleus-core, datanucleus-api-jdo
/datanucleus-api-jpa, datanucleus-excel and apache-poi.

There are tutorials available for use of DataNucleus with Excel for JDO and for JPA
Things to bear in mind with Excel usage :-

* Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

* Relations : A spreadsheet cannot store related objects directly, since each object is a row of a
particular worksheet. DataNucleus gets around this by storing the String-form of the identity of
the related object in the relation cell.

21

https://github.com/datanucleus/datanucleus-excel
https://github.com/datanucleus/datanucleus-excel
../jdo/tutorial_excel.html
../jpa/tutorial_excel.html

OOXML Datastores

¢

DataNucleus supports persisting/retrieving objects to/from OOXML documents (using the
datanucleus-excel plugin) which makes use of the Apache POI project. Simply specify your
"connectionURL" as follows

datanucleus.ConnectionURL=excel:file:myfile.x1sx

replacing myfile.x1sx with your filename, which can be absolute or relative. This connects to a file
on your local machine. You then create your PMF/EMF as normal and use JDO/JPA as normal.

The jars required to use DataNucleus OOXML persistence are datanucleus-core, datanucleus-api-
jdo/datanucleus-api-jpa, datanucleus-excel and apache-poi.

There are tutorials available for use of DataNucleus with Excel for J]DO andfor JPA
Things to bear in mind with OOXML usage :-

* Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

* Relations : A spreadsheet cannot store related objects directly, since each object is a row of a
particular worksheet. DataNucleus gets around this by storing the String-form of the identity of
the related object in the relation cell.

22

https://github.com/datanucleus/datanucleus-excel
../jdo/tutorial.html
../jpa/tutorial.html

ODF Datastores

DataNucleus supports persisting/retrieving objects to/from ODF documents (using the datanucleus-
odf plugin, which makes use of the ODFDOM project). Simply specify your "connectionURL" as
follows

datanucleus.ConnectionURL=odf:file:myfile.ods

replacing myfile.ods with your filename, which can be absolute or relative. This connects to a file
on your local machine. You then create your PMF/EMF as normal and use JDO/JPA as normal.

The jars required to use DataNucleus ODF persistence are datanucleus-core, datanucleus-api-jdo
/datanucleus-api-jpa, datanucleus-odf and odftoolkit.

There are tutorials available for use of DataNucleus with ODF for JDO and for JPA
Things to bear in mind with ODF usage :-

* Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

* Relations : A spreadsheet cannot store related objects directly, since each object is a row of a
particular worksheet. DataNucleus gets around this by storing the String-form of the identity of
the related object in the relation cell. See this

A | B | C | D | E | F | G |
35Fred B.2] kil z 1 Smith TRUE
-I]-. e

| Olsaran i 2 Green : TRUE
0'Chris o 3 Tomlinson TRUE

8\ peopre (Fousss 7 [23— —

6 T e e

HEDN j 1 Smith _ TRUE
(e 2 Green _ TRUE
3 Tomlinson | TRUE|

Worksheet Headers

A typical spreadsheet has many rows of data. It contains no names of columns tying the data back

23

https://github.com/datanucleus/datanucleus-odf
https://github.com/datanucleus/datanucleus-odf
../jdo/tutorial.html
../jpa/tutorial.html

to the input object (field names). DataNucleus allows an extension specified at class level called
include-column-headers (should be set to true). When the table is then created it will include an
extra row (the first row) with the column names from the metadata (or field names if no column
names were defined). For example

B C D E F G
=
= 35 Fred. 23]] | iSmth | TRUE
EE 0/Sarah i . . 2Green | TRUE|
o 0 Chris 0 | _ 3 Tomlinson TRUE
6

_ P:nple,f: Houses #

] : 1 Smith. | TRUE
2Green | TRUE
3 Tomlinson | TRUE

24

XML Datastores
[XML

DataNucleus supports persisting/retrieving objects to/from XML documents (using the datanucleus-
xml plugin). Simply specify your "connectionURL" as follows

datanucleus.ConnectionURL=xml:file:myfile.xml

replacing myfile.xml with your filename, which can be absolute or relative.

It makes use of JAXB, and the jars required to use DataNucleus XML persistence are datanucleus-
core, datanucleus-api-jdo/datanucleus-api-jpa, datanucleus-xml and JAXB API, JAXB Reference
Implementation. If you wish to help out in this effort either by contributing or by sponsoring
particular functionality please contact us.

Things to bear in mind with XML usage :-
* Indentation of XML : the persistence property datanucleus.xml.indentSize defaults to 4 but
you can set it to the desired indent size
* Querying using JDOQL/JPQL will operate in-memory currently.

» Application identity is supported but can only have 1 PK field and must be a String. This is a
limitation of JAXB

* Persistent properties are not supported, only persistent fields

* Out of the box it will use the JAXB reference implementation. You could, in principle, provide
support for other JAXB implementations by implementing
org.datanucleus.store.xmlJAXBHandler —and then specify the persistence property
datanucleus.xml.jaxbHandlerClass to the JAXBHandler implementation. If you do manage to
write a JAXBHandler for other JAXB implementations please consider contributing it to the
project

Mapping : XML Datastore Mapping

When persisting a Java object to an XML datastore clearly the user would like some control over the
structure of the XML document. Here’s an example using JDO XML MetaData

25

https://github.com/datanucleus/datanucleus-xml
https://github.com/datanucleus/datanucleus-xml

<jdo>
<package name="org.datanucleus.samples.models.company">
<class name="Person" detachable="true" schema="/myproduct/people"”
table="person">
<field name="personNum">
<extension vendor-name="datanucleus" key="XmlAttribute" value="true"/>
</field>
<field name="firstName" primary-key="true"/> <!-- PK since JAXB requires
String -->
<field name="lastName"/>
<field name="bestFriend"/>
</class>
</package>
</jdo>

Things to note :

» schema on class is used to define the "XPath" to the root of the class in XML. You can also use
the extension "xpath" to specify the same thing.

* table on class is used to define the name of the element for an object of the particular class.
* column on field is used to define the name of the element for a field of the particular class.

* XmlAttribute : when set to true denotes that this will appear in the XML file as an attribute of
the overall element for the object

* When a field is primary-key it will gain a JAXB "XmlID" attribute.

* When a field is a relation to another object (and the field is not embedded) then it will gain a
JAXB "XmlIDREF" attribute as a link to the other object.

* Important : JAXB has a limitation for primary keys : there can only be a single PK field, and it
must be a String!

What is generated with the above is as follows

<?xml version="1.0" encoding="UTF-8"7>
<myproduct>
<people>
<person personNum="1">
<firstName>Bugs</firstName>
<lastName>Bunny</lastName>
<bestFriend>My</bestFriend>
</person>
</people>
</myproduct>

Here’s the same example using JDO Annotations

26

@PersistenceCapable(schema="/myproduct/people", table="person")
public class Person

{
@XmlAttribute
private long personNum;

@PrimaryKey
private String firstName;

private String lastName;

private Person bestFiend;
@XmLElementWrapper (name="phone-numbers")
@XmlElement(name="phone-number")

@Element(types=String.class)
private Map phoneNumbers = new HashMap();

Here’s the same example using JPA Annotations (with DataNucleus @Extension annotation) TODO
Add this

27

JSON Datastores

DataNucleus supports persisting/retrieving objects to/from JSON documents (using the datanucleus-
json plugin). Simply specify your "connectionURL" as follows

datanucleus.ConnectionURL=json:{url}

replacing "{url}" with some URL of your choice (e.g "http://www.mydomain.com/somepath/"). You
then create your PMF/EMF as normal and use JDO/JPA as normal.

Things to bear in mind with JSON usage :-

* Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

* Relations : DataNucleus stores the id of the related object(s) in the element of the field. If a
relation is bidirectional then it will be stored at both ends of the relation; this facilitates easy
access to the related object with no need to do a query to find it.</1i>

Mapping : HTTP Mapping

The persistence to JSON datastore is performed via HTTP methods. HTTP response codes are used to
validate the success or failure to perform the operations. The JSON datastore must respect the
following:

Method

Operation

URL format

HTTP response code

PUT

update objects

/{primary key}

HTTP Code 201 (created), 200 (ok) or 204 (no content)

HEAD

locate objects

/{primary key}

HTTP 404 if the object does not exist

28

https://github.com/datanucleus/datanucleus-json
https://github.com/datanucleus/datanucleus-json

POST

insert objects

/

HTTP Code 201 (created), 200 (ok) or 204 (no content)
GET

fetch objects

/{primary key}

HTTP Code 200 (ok) or 404 if object does not exist
GET

retrieve extent of classes (set of objects)

/

HTTP Code 200 (ok) or 404 if no objects exist

DELETE

delete objects

/{primary key}

HTTP Code 202 (accepted), 200 (ok) or 204 (no content)

Mapping : Persistent Classes

Metadata API

Extension Element Attachment
Extension

Description

JDO
/jdo/package/class/extension
url

Defines the location of the resources/objects for the class

<jdo>
<package name="org.datanucleus.samples.models.company">
<class name="Person" detachable="true">
<extension vendor-name="datanucleus" key="url" value="/Person"/>
</class>
</package>
</jdo>

In this example, the url extension identifies the Person resources/objects as /Person. The persistence
operations will be relative to this path. e.g /Person/{primary key} will be used for PUT (update), GET
(fetch) and DELETE (delete) methods.

30

Amazon S3 Datastores

amazon
webservices”

DataNucleus supports persisting/retrieving objects to/from Amazon Simple Storage Service (using
the datanucleus-json plugin). Simply specify your connection details as follows

datanucleus.ConnectionURL=amazons3:http://s3.amazonaws.com/
datanucleus.ConnectionUserName={Access Key ID}
datanucleus.ConnectionPassword={Secret Access Key}
datanucleus.cloud.storage.bucket={bucket}

You then create your PMF/EMF as normal and use JDO/JPA as normal.
Things to bear in mind with Amazon S3 usage :-

* Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

References

Below are some references using this support

» Simple Integration of Datanucleus 2.0.0 + AmazonS3

31

https://github.com/datanucleus/datanucleus-json
http://www.den-4.com/?p=113

Google Storage Datastores

DataNucleus supports persisting/retrieving objects to/from Google Storage (using the datanucleus-
json plugin). Simply specify your connection details as follows

datanucleus.ConnectionURL=googlestorage:http://commondatastorage.googleapis.com/
datanucleus.ConnectionUserName={Access Key ID}
datanucleus.ConnectionPassword={Secret Access Key}
datanucleus.cloud.storage.bucket={bucket}

You then create your PMF/EMF as normal and use JDO/JPA as normal.
Things to bear in mind with GoogleStorage usage :-

* Querying can be performed using JDOQL or JPQL. Any filtering/ordering will be performed in-
memory

32

https://github.com/datanucleus/datanucleus-json
https://github.com/datanucleus/datanucleus-json

HBase Datastores

L| .

HEBEBASE

DataNucleus supports persisting/retrieving objects to/from HBase datastores (using the
datanucleus-hbase plugin, which makes use of the HBase/Hadoop jars). Simply specify your
"connectionURL" as follows

datanucleus.ConnectionURL=hbase[:{server}:{port}]
datanucleus.ConnectionUserName=
datanucleus.ConnectionPassword=

If you just specify the URL as hbase then you have a local HBase datastore, otherwise it tries to
connect to the datastore at {server}:{port}. Alternatively just put "hbase" as the URL and set the
zookeeper details in hbase-site.xml as normal. You then create your PMF/EMF as normal and use
JDO/JPA as normal.

The jars required to use DataNucleus HBase persistence are datanucleus-core, datanucleus-api-jdo
/datanucleus-api-jpa, datanucleus-hbase and hbase-client.

There are tutorials available for use of DataNucleus with HBase for JDO and for JPA
Things to bear in mind with HBase usage :-

* Creation of a PMF/EMF will create an internal HBaseConnectionPool

Creation of a PM/EM will create/use a HConnection.

* Querying can be performed using JDOQL or JPQL. Some components of a filter are handled in
the datastore, and the remainder in-memory. Currently any expression of a field (in the same
table), or a literal are handled in-datastore, as are the operators &&, | |, >, >=, <, <, ==, and !=.

* The "row key" will be the PK field(s) when using "application-identity"”, and the generated id
when using "datastore-identity"

Field/Column Naming

By default each field is mapped to a single column in the datastore, with the family name being the
name of the table, and the column name using the name of the field as its basis (but following
JDO/JPA naming strategies for the precise column name). You can override this as follows

@Column(name="{familyName}:{qualifierName}")
String myField;

replacing {familyName} with the family name you want to use, and {qualifierName} with the
column name (qualifier name in HBase terminology) you want to use. Alternatively if you don’t

33

https://github.com/datanucleus/datanucleus-hbase
../jdo/tutorial.html
../jpa/tutorial.html

want to override the default family name (the table name), then you just omit the "{familyName}:"
part and simply specify the column name.

MetaData Extensions

Some metadata extensions (@Extension) have been added to DataNucleus to support some of HBase
particular table creation options. The supported attributes at Table creation for a column family

ar

e:

* bloomFilter : An advanced feature available in HBase is Bloom filters, allowing you to improve

lookup times given you have a specific access pattern. Default is NONE. Possible values are:
ROW - use the row key for the filter, ROWKEY - use the row key and column key
(family+qualifier) for the filter.

* inMemory : The in-memory flag defaults to false. Setting it to true is not a guarantee that all

blocks of a family are loaded into memory nor that they stay there. It is an elevated priority, to
keep them in memory as soon as they are loaded during a normal retrieval operation, and until
the pressure on the heap (the memory available to the Java-based server processes)is too high,
at which time they need to be discarded by force.

* maxVersions : Per family, you can specify how many versions of each value you want to

keep.The default value is 3, but you may reduce it to 1, for example, in case you know for sure
that you will never want to look at older values.

* keepDeletedCells : ColumnFamilies can optionally keep deleted cells. That means deleted cells

can still be retrieved with Get or Scan operations, as long these operations have a time range
specified that ends before the timestamp of any delete that would affect the cells. This allows for
point in time queries even in the presence of deletes. Deleted cells are still subject to TTL and
there will never be more than "maximum number of versions" deleted cells. A new "raw" scan
options returns all deleted rows and the delete markers.

* compression : HBase has pluggable compression algorithm, default value is NONE. Possible

values GZ, LZO, SNAPPY.

* blockCacheEnabled : As HBase reads entire blocks of data for efficient I/O usage, it retains

these blocks in an in-memory cache so that subsequent reads do not need any disk operation.
The default of true enables the block cache for every read operation. But if your use-case only
ever has sequential reads on a particular column family, it is advisable that you disable it from
polluting the block cache by setting it to false.

* timeToLive : HBase supports predicate deletions on the number of versions kept for each value,

but also on specific times. The time-to-live (or TTL) sets a threshold based on the timestamp of a
value and the internal housekeeping is checking automatically if a value exceeds its TTL. If that
is the case, it is dropped during major compactions

To express these options, a format similar to a properties file is used such as:

hbase.columnFamily.[family name to apply property on].[attribute] = {value}

where:

34

« attribute: One of the above defined attributes (inMemory, bloomFilter,...)
» family name to apply property on: The column family affected.
» value: Associated value for this attribute.

Let’s take an example applying column family/qualifiers, setting the bloom filter option to ROWKEY,
and the in-memory flag to true would look like. Firstly JDO Annotations:-

@PersistenceCapable
@Extension(vendorName
value = "ROWKEY")
@Extension(vendorName

"datanucleus", key = "hbase.columnFamily.meta.bloomFilter",

"hbase.columnFamily.meta.inMemory", value

"datanucleus", key

= "true")
public class MyClass
{

@PrimaryKey

private long id;

// column family data, name of attribute blob
@Column(name = "data:blob")

private String blob;

// column family meta, name of attribute firstName
@Column(name = "meta:firstName")

private String firstName;

// column family meta, name of attribute firstName
@Column(name = "meta:lastName")

private String lastName;

[... getter and setter ...]

or using XML

35

<class name="MyClass">
<extension vendor-name="datanucleus" key="hbase.columnFamily.meta.bloomFilter"
value="ROWKEY"/>
<extension vendor-name="datanucleus" key="hbase.columnFamily.meta.inMemory"
value="true"/>
<field name="id" primary-key="true"/>
<field name="blob">
<column name="data:blob"/>
</field>
<field name="firstName">
<column name="meta:firstName"/>
</field>
<field name="lastName">
<column name="meta:lastName"/>
</field>
</class>

Now JPA Annotations:-

@Entity
@org.datanucleus.api.jpa.annotations.Extensions({
@org.datanucleus.api.jpa.annotations.Extension(key =
"hbase.columnFamily.meta.bloomFilter", value = "ROWKEY"),
@org.datanucleus.api.jpa.annotations.Extension(key =
"hbase.columnFamily.meta.inMemory", value = "true")
})
public class MyClass
{
eId
private long 1id;

// column family data, name of attribute blob
@Column(name = "data:blob")

private String blob;

// column family meta, name of attribute firstName
@Column(name = "meta:firstName")

private String firstName;

// column family meta, name of attribute firstName
@Column(name = "meta:lastName")

private String lastName;

[... getter and setter ...]

or using XML

36

<entity class="mydomain.MyClass">
<extension vendor-name="datanucleus" key="hbase.columnFamily.meta.bloomFilter"
value="ROWKEY"/>
<extension vendor-name="datanucleus" key="hbase.columnFamily.meta.inMemory"
value="true"/>
<attributes>
<id name="1id"/>
<basic name="blob">
<column name="data:blob"/>
</basic>
<basic name="firstName">
<column name="meta:firstName"/>
</basic>
<basic name="lastName">
<column name="meta:lastName"/>
</basic>
</attributes>
</entity>

References

Below are some references using this support

» Apache Hadoop HBase plays nicely with JPA
* HBase with JPA and Spring Roo

» Value Generator plugin for HBase and DataNucleus

37

http://www.nofluffjuststuff.com/blog/matthias__wessendorf_/2010/03/apache_hadoop_hbase_plays_nice_with_jpa
http://rainerpeter.wordpress.com/2011/01/11/hbase-with-jpa-and-spring-roo/
http://rainerpeter.wordpress.com/2011/01/12/value-generator-plugin-datanucleus-hbase/

MongoDB Datastores

DataNucleus supports persisting/retrieving objects to/from MongoDB datastores (using the
datanucleus-mongodb plugin, which utilises the Mongo Java driver). Simply specify your
"connectionURL" as follows

datanucleus.ConnectionURL=mongodb: [{server}][/{dbName}] [,{server2}[,server3}]]

For example, to connect to a local server, with database called "myMongoDB"

datanucleus.ConnectionURL=mongodb:/myMongoDB

If you just specify the URL as mongodb then you have a local MongoDB datastore called
"DataNucleus", otherwise it tries to connect to the datastore {dbName} at {server}. The multiple
{server} option allows you to run against MongoDB replica sets. You then create your PMF/EMF as
normal and use JDO/JPA as normal.

The jars required to use DataNucleus MongoDB persistence are datanucleus-core, datanucleus-api-
jdo/datanucleus-api-jpa, datanucleus-mongodb and mongo-java-driver.

There are tutorials available for use of DataNucleus with MongoDB for JDO and for JPA

Things to bear in mind with MongoDB usage :-

38

Creation of a PMF/EMF will create a MongoClient. This will be closed then the PMF/EMF is
closed.

Creation of a PM/EM and performing an operation will obtain a DB object from the MongoClient.
This is pooled by the MongoClient so is managed by MongoDB. Closing the PM/EM will stop
using that DB

You can set the number of connections per host with the persistence property
datanucleus.mongodb.connectionsPerHost

Querying can be performed using JDOQL or JPQL. Some components of a filter are handled in
the datastore, and the remainder in-memory. Currently any expression of a field (in the same
table), or a literal are handled in-datastore, as are the operators &&, | |, >, >=, <, <, ==, and !=.
Note that if something falls back to being evaluated in-memory then it can be much slower, and
this will be noted in the log, so people are advised to design their models and queries to avoid
that happening if performance is a top priority.

If you want a query to be runnable on a slave MongoDB instance then you should set the query
extension (JDO) / hint (JPA) slave-ok as true, and when executed it can be run on a slave
instance.

https://github.com/datanucleus/datanucleus-mongodb
http://www.mongodb.org/display/DOCS/Replica+Sets
../jdo/tutorial.html
../jpa/tutorial.html

» All objects of a class are persisted to a particular "document” (specifiable with the "table" in
metadata), and a field of a class is persisted to a particular "field" ("column" in the metadata).

* Relations : DataNucleus stores the id of the related object(s) in a field of the owning object.
When a relation is bidirectional both ends of the relation will store the relation information.

» Capped collections : you can specify the extension metadata key mongodb.capped.size as the
number of bytes of the size of the collection for the class in question.

 If you want to specify the max number of connections per host with MongoDB then set the
persistence property datanucleus.mongodb.connectionsPerHost

* If you want to specify the MongoDB threadsAllowedToBlockForConnectionMultiplier, then set the
persistence property
datanucleus.mongodb.threadsAllowedToBlockForConnectionMultiplier

Mapping : Embedded Persistable fields

When you have a field in a class that is of a persistable type you sometimes want to store it with the
owning object. In this case you can use JDO / JPA embedding of the field. DataNucleus offers two
ways of performing this embedding

* The default is to store the object in the field as a sub-document (nested) of the owning
document. Similarly if that sub-object has a field of a persistable type then that can be further
nested.

* The alternative is to store each field of the sub-object as a field of the owning document (flat
embedding). Similarly if that sub-object has a field of a persistable type then it can be flat
embedded in the same way

For JDO this would be defined as follows (for JPA just swap @PersistenceCapable for @Entity)

@PersistenceCapable
public class A
{

@Embedded

B b;

This example uses the default embedding, using a nested document within the owner document,
and could look something like this

{ "name" : "A Name" ,
"id" 1 1,
"b" : { "b_name" : "B name" ,
"b_description" : "the description"}
}

39

http://www.mongodb.org/display/DOCS/Capped+Collections
../jdo/mapping.html#embedded_pc
../jpa/mapping.html#embedded_entity

The alternative for JDO would be as follows (for JPA just swap @PersistenceCapable for @Entity)

@PersistenceCapable

public class A

{
@Embedded
@Extension(vendorName="datanucleus", key="nested", value="false")
B b;

and this will use flat embedding, looking something like this

{ "name" : "A Name" ,
"id" 1,
"b_name" : "B name" ,
"b_description" : "the description”
}

Mapping : Embedded Collection elements

When you have a field in a class that is of a Collection type you sometimes want to store it with the
owning object. In this case you can use JDO / JPA embedding of the field. So if we have

@PersistenceCapable
public class A

{
©Element(embedded="true")
Collection* bs;

and would look something like this

40

../jdo/mapping.html#embedded_collection
../jpa/mapping.html#embedded_collection

{ "name" : "A Name" ,

"id" 1,
"bs" :
[
{ "name" : "B Name 1" ,
"description" : "desc 1"} ,
{ "name" : "B Name 2" ,
"description" : "desc 2"} ,
{ "name" : "B Name 3" ,
"description" : "desc 3"}
]
}
References

Below are some references using this support

Sasa Jovancic - Use JPA with MongoDb and Datanucleus

41

http://sasajovancic.blogspot.com/2011/06/use-jpa-with-mongodb-and-datanucleus.html

Neo4j Datastores

Neog4j

the graph database

DataNucleus supports persisting/retrieving objects to/from embedded Neo4j graph datastores
(using the datanucleus-neo4j plugin, which utilises the Neo4j Java driver). Simply specify your
"connectionURL" as follows

datanucleus.ConnectionURL=neo4j:{db_location}

For example

datanucleus.ConnectionURL=neo4j :myNeo4jDB

You then create your PMF/EMF as normal and use JDO/JPA as normal.

The jars required to use DataNucleus Neo4j persistence are datanucleus-core, datanucleus-api-jdo
/datanucleus-api-jpa, datanucleus-neo4j and neo4j.

Note that this is for embedded Neo4j. This is because at the time of writing there is no binary
protocol for connecting Java clients to the server with Neo4j. When that is available we would
hope to support it.

There are tutorials available for use of DataNucleus with Neo4j for JDO and for JPA

Things to bear in mind with Neo4j usage :-

42

Creation of a PMF/EMF will create a GraphDatabaseService and this is shared by all PM/EM
instances. Since this is for an embedded graph datastore then this is the only logical way to
provide this. Should this plugin be updated to connect to a Neo4] server then this will change.

Querying can be performed using JDOQL or JPQL. Some components of a filter are handled in
the datastore, and the remainder in-memory. Currently any expression of a field (in the same
'table"), or a literal are handled in-datastore, as are the operators &&, | |, >, >=, <, <, ==, and !=.
Also the majority of ordering and result clauses are evaluatable in the datastore, as well as
query result range restrictions.

When an object is persisted it becomes a Node in Neo4j. You define the names of the properties
of that node by specifying the "column" name using JDO/JPA metadata

Any 1-1, 1-N, M-N, N-1 relation is persisted as a Relationship object in Neo4j and any positioning
of elements in a List or array is preserved via a property on the Relationship.

If you wanted to specify some neo4j.properties file for use of your embedded database then
specify the persistence property datanucleus.ConnectionPropertiesFile set to the filename.

This plugin is in prototype stage so would welcome feedback and, better still, some
contributions to fully exploit the power of Neo4j. Please contact us.

http://www.neo4j.org
https://github.com/datanucleus/datanucleus-neo4j
../jdo/tutorial.html
../jpa/tutorial.html

Persistence Implementation

Let’s take some example classes, and then describe how these are persisted in Neo4j.

public class Store

{ @Persistent(primaryKey="true", valueStrategy="identity")
long id;
Inventory inventory;

}

public class Inventory

{ @Persistent(primaryKey="true", valueStrategy="identity")
long id;
Set<Product> products;

}

public class Product

{ @Persistent(primaryKey="true", valueStrategy="identity")
long id;
String name;
double value;

}

When we persist a Store object, which has an Inventory, which has three Product objects, then we
get the following

* Node for the Store, with the "id" is represented as the node id

* Node for the Inventory, with the "id" is represented as the node id

* Relationship between the Store Node and the Inventory Node, with the relationship type as
"SINGLE_VALUED", and with the property DN_FIELD_NAME as "inventory"

* Node for Product #1, with properties for "name" and "value" as well as the "id" represented as
the node id

* Node for Product #2, with properties for "name" and "value" as well as the "id" represented as
the node id

43

Node for Product #3, with properties for "name" and "value" as well as the "id" represented as
the node id

Relationship between the Inventory Node and the Product #1 Node, with the relationship type
"MULTI_VALUED" and the property DN_FIELD_NAME as "products”

Relationship between the Inventory Node and the Product #2 Node, with the relationship type
"MULTI_VALUED" and the property DN_FIELD _NAME as "products”

Relationship between the Inventory Node and the Product #3 Node, with the relationship type
"MULTI_VALUED" and the property DN_FIELD_NAME as "products”

Index in "DN_TYPES" for the Store Node with "class" as "mydomain.Store"
Index in "DN_TYPES" for the Inventory Node with "class" as "mydomain.Inventory"

Index in "DN_TYPES" for the Product Node with "class" as "mydomain.Product”

Note that, to be able to handle polymorphism more easily, if we also have a class Book that extends
Product then when we persist an object of this type we will have two entries in "DN_TYPES" for this
Node, one with "class" as "mydomain.Book" and one with "class" as "mydomain.Product” so we can
interrogate the Index to find the real inheritance level of this Node.

Query Implementation

In terms of querying, a JDOQL/JPQL query is converted into a generic query compilation, and then
this is attempted to be converted into a Neo4j "Cypher" query. Not all syntaxis are convertable
currently and the query falls back to in-memory evauation in that case.

44

LDAP Datastores

LD
A

P

DataNucleus supports persisting/retrieving objects to/from LDAP datastores datanucleus-ldap
plugin). If you wish to help out development of this plugin either by contributing or by sponsoring
particular functionality please contact us.

Datastore Connection

The following persistence properties will connect to an LDAP running on your local machine

datanucleus.ConnectionDriverName=com.sun.jndi.1ldap.LdapCtxFactory
datanucleus.ConnectionURL=1dap://localhost: 10389
datanucleus.ConnectionUserName=uid=admin,ou=system
datanucleus.ConnectionPassword=secret

You create your PersistenceManagerFactory or EntityManagerFactory with these properties.
Thereafter you have the full power of the JDO or JPA APIs at your disposal, for your LDAP datastore.

Queries
DataNucleus allows you to query the objects in the datastore using the following

* JDOQL - language based around the objects that are persisted and using Java-type syntax

* JPQL - language based around the objects that are persisted and using SQL-like syntax

Queries are evaluated in-memory.

Mapping : LDAP Datastore Mapping

When persisting a Java object to an LDAP datastore clearly the user would like some control over
where and how in the LDAP DIT (directory information tree) we are persisting the object. In
general Java objects are mapped to LDAP entries and fields of the Java objects are mapped to
attributes of the LDAP entries.

The following Java types are supported and stored as single-valued attribute to the LDAP entry:

» String, primitives (like int and double), wrappers of primitives (like java.util.Long),
java.util.BigDecimal, java.util.BigInteger, java.util.UUID

* boolean and java.lang.Boolean are converted to RFC 4517 "boolean" syntax (TRUE or FALSE)

* java.util.Date and java.util.Calendar are converted to RFC 4517 "generalized time" syntax

45

https://github.com/datanucleus/datanucleus-ldap
../jdo/mapping.html#pmf
../jpa/mapping.html#emf
../jdo/query.html#jdoql
../jpa/query.html#jpql

Arrays, Collections, Sets and Lists of these data types are stored as multi-valued attributes. Please
note that when using Arrays and Lists no order could be guaranteed and no duplicate values are
allowed!

Mapping : Relationships

By default persistable objects are stored as separate LDAP entries. There are some options how to
persist relationship references between persistable objects:

* DN matching
» Attribute matching

e LDAP hierarchies (DEPRECATED)

It is also possible to store persistable objects embedded. Note that there is inbuilt logic for deciding
which of these mapping strategies to use for a relationship. You can explicitly set this with the
metadata extension for the field/property mapping-strategy and it can be set to dn or attribute.

Examples

Here’s an example using JDO XML MetaData:

<jdo>
<package name="org.datanucleus.samples.models.company">
<class name="Group" table="ou=Groups,dc=example,dc=com"
schema="top,groupOfNames" detachable="true">
<field name="name" column="cn" primary-key="true" />
<field name="users" column="member" />
</class>

<class name="Person" table="ou=Users,dc=example,dc=com"
schema="top, person,organizationalPerson,inetOrgPerson" detachable="true">
<field name="personNum" column="cn" primary-key="true" />
<field name="firstName" column="givenMame" />
<field name="lastName" column="sn" />
</class>
</package>
</jdo>

For the class as a whole we use the table attribute to set the distinguished name of the container
under which to store objects of a type. So, for example, we are mapping all objects of class Group as
subordinates to "ou=Groups,dc=example,dc=com". You can also use the extension "dn" to specify the
same thing.

For the class as a whole we use the schema attribute to define the object classes of the LDAP entry.
So, for example, all objects of type Person are mapped to the common
"top,person,organizationalPerson,inetOrgPerson” object classes in LDAP. You can also use the
extension "objectClass" to specify the same thing.

46

#ldap_mapping_by_dn
#ldap_mapping_by_attribute
#ldap_mapping_by_hierarchy
#ldap_mapping_as_embedded

For each field we use the column attribute to define the LDAP attribute that we are mapping this
field to. So, for example, we map the Group "name" to "cn" in our LDAP. You can also use the
extension "attribute" to specify the same thing.

Some resulting LDAP entries would look like this:

dn: cn=Sales,ou=Groups,dc=example,dc=com
object(Class: top

objectClass: groupOfNames

cn: Sales

member: cn=1,ou=Users,dc=example,dc=com

dn: cn=1,ou=Users,dc=example,dc=com
objectClass: top

object(Class: person

object(Class: organizationalPerson
objectClass: inetOrgPerson

cn: 1
givenName: Bugs
sn: Bunny

Here’s the same example using JDO Annotations:

@PersistenceCapable(table="ou=Groups,dc=example,dc=com", schema="top,groupOfNames")
public class Group

{

@PrimaryKey

@Column(name = "cn")

String name;

@Column(name = "member")

protected Set<Person> users = new HashSet<Person>();
}

@PersistenceCapable(table="ou=Users,dc=example,dc=com", schema
="top,person,organizationalPerson, inetOrgPerson")
public class Person

{
@PrimaryKey
@Column(name = "cn")
private long personNum;
@Column(name = "givenName")
private String firstName;
@Column(name = "sn")
private String lastName;

}

47

Here’s the same example using JPA Annotations:

@Entity
@Table(name="ou=Groups,dc=example,dc=com", schema="top,groupOfNames")
public class Group
{
@Id
@Extension(key="attribute", value="cn")
String name;

@0neToMany
@Extension(key="attribute", value="member")
protected Set users = new HashSet();

}

@Entity
@Table(name="ou=Groups,dc=example,dc=com", schema
="top, person,organizationalPerson, inetOrgPerson")
public class Person

{
@Id
@Extension(key="attribute", value="roomNumber")
private long personNum;
@Extension(key="attribute", value="cn")
private String firstName;
@Extension(key="attribute", value="sn")
private String lastName;

+

Known Limitations

The following are known limitations of the current implementation

» Datastore Identity is not currently supported

* Optimistic checking of versions is not supported

Identity generators that operate using the datastore are not supported

* Cannot map inherited classes to the same LDAP type

LDAP : Relationship Mapping by DN

A common way to model relationships between LDAP entries is to put the LDAP distinguished name
of the referenced LDAP entry to an attribute of the referencing LDAP entry. For example entries
with object class groupOfNames use the attribute member which contains distinguished names of
the group members.

48

We just describe 1-N relationship mapping here and distinguish between unidirectional and
bidirectional relationships. The metadata for 1-1, N-1 and M-N relationship mapping looks identical,
the only difference is whether single-valued or multi-valued attributes are used in LDAP to store
the relationships.

¢ Unidirectional
» Bidirectional
Mapping by DN : 1-N Unidirectional

We use the following example LDAP tree and Java classes:

dc=example,dc=com public class Department {
String name;
-- ou=Departments Set<Employee> employees;

0

|-- cn=Sales }
|-- cn= Eng1neer1ng

|--

|

|

|

|

| public class Employee {
| String firstName;
|

|

|

|

|

-- ou=Employees String lastName;
-- cn=Daffy Duck }

0
|-~ en=Bugs Bunny String fullName;
I
|'- cn=Speedy Gonzales

|--

We have a flat LDAP tree with one container for all the departments and one container for all the
employees. We have two Java classes, Department and Employee. The Department class contains
a Collection of type Employee. The Employee knows nothing about the Department it belongs to.

There are 2 ways that we can persist this relationship in LDAP because the DN reference could be
stored at the one or at the other LDAP entry.

Owner Object Side

The obvious way is to store the reference at the owner object side, in our case at the department
entry. This is possible since LDAP allows multi-valued attributes. The example department entry
looks like this:

dn: cn=Sales,ou=Departments,dc=example,dc=com
object(Class: top

object(Class: groupOfNames

cn: Sales

member: cn=Bugs Bunny,ou=Employees,dc=example,dc=com
member: cn=Daffy Duck,ou=Employees,dc=example,dc=com

Our JDO metadata looks like this:

49

#ldap_dn_unidirectional
#ldap_dn_bidirectional

So we define that the attribute member should be used to persist the relationship of field employees.

Note: We use the extension empty-value here. The groupOfNames object class defines the member
attribute as mandatory attribute. In case where you remove all the employees from a department
would delete all member attributes which isn’t allowed. In that case DataNucleus adds this empty
value to the member attribute. This value is also filtered when DataNucleus reads the object from

<jdo>
<package name="com.example">
<class name="Department" table="ou=Departments,dc=example,dc=com'
schema="top, groupOfNames">
<field name="name" primary-key="true" column="cn" />
<field name="employees" column="member">
<extension vendor-name="datanucleus" key="empty-value"
value="uid=admin,ou=system"/>
</field>
</class>
<class name="Employee" table="ou=Employees,dc=example,dc=com"
schema="top, person,organizationalPerson, inetOrgPerson">
<field name="fullName" primary-key="true column="cn" />
<field name="firstName" column="givenName" />
<field name="lastName" column="sn" />
</class>
</package>
</jdo>

LDAP.

Non-Owner Object Side

Another possible way is to store the reference at the non-owner object side, in our case at the

employee entry. The example employee entry looks like this:

dn: cn=Bugs Bunny,ou=Employees,dc=example,dc=com
objectClass: top

object(Class: person

objectClass: organizationalPerson

object(Class: inetOrgPerson

cn: Bugs Bunny

givenName: Bugs

sn: Bunny

departmentNumber: cn=Sales,ou=Departments,dc=example,dc=com

Our JDO metadata looks like this:

50

<jdo>
<package name="com.example">
<class name="Department" table="ou=Departments,dc=example,dc=com"
schema="top, groupOfNames">
<field name="name" primary-key="true" column="cn" />
<field name="employees">
<element column="departmentNumber" />
</field>
</class>
<class name="Employee" table="ou=Employees,dc=example,dc=com"
schema="top,person,organizationalPerson, inetOrgPerson">
<field name="fullName" primary-key="true column="cn" />
<field name="firstName" column="givenName" />
<field name="lastName" column="sn" />
</class>
</package>
</jdo>

We need to define the relationship at the department metadata because the employee doesn’t know
about the department it belongs to. With the <element> tag we specify that the relationship should
be persisted at the other side, the column attribute defines the LDAP attribute to use. In this case the
relationship is persisted in the departmentNumber attribute at the employee entry.

Mapping by DN : 1-N Bidirectional

We use the following example LDAP tree and Java classes:

dc=example,dc=com public class Department {
String name;
- ou=Departments Set<Employee> employees;

0

|-- cn=Sales }
|—- cn= Eng1neer1ng

|--

|

|

|

|

| public class Employee {
| String firstName;
|

|

|

|

|

-- ou=Employees String lastName;
-- cn=Bugs Bunn String fullName;
g Yy g
|-- cn=Daffy Duck Department department;
|—— cn= Speedy Gonzales }
|--

We have a flat LDAP tree with one container for all the departments and one container for all the
employees. We have two Java classes, Department and Employee. The Department class contains
a Collection of type Employee. Now each Employee has a reference to its Department.

It is possible to persist this relationship on both sides.

51

dn: cn=Sales,ou=Departments,dc=example,dc=com
object(Class: top

objectClass: groupOfNames

cn: Sales

member: cn=Bugs Bunny,ou=Employees,dc=example,dc=com
member: cn=Daffy Duck,ou=Employees,dc=example,dc=com

<jdo>
<package name="com.example">
<class name="Department" table="ou=Departments,dc=example,dc=com'
schema="top, groupOfNames">
<field name="name" primary-key="true" column="cn" />
<field name="employees" column="member">
<extension vendor-name="datanucleus" key="empty-value"
value="uid=admin,ou=system"/>
</field>
</class>
<class name="Employee" table="ou=Employees,dc=example,dc=com"
schema="top, person,organizationalPerson,inetOrgPerson">
<field name="fullName" primary-key="true column="cn" />
<field name="firstName" column="givenName" />
<field name="lastName" column="sn" />
<field name="department" mapped-by="employees" />
</class>
</package>
</jdo>

In this case we store the relation at the department entry side in a multi-valued attribute member.
Now the employee metadata contains a department field that is mapped-by the employees field of
department.

Note: We use the extension empty-value here. The groupOfNames object class defines the member
attribute as mandatory attribute. In case where you remove all the employees from a department
would delete all member attributes which isn’t allowed. In that case DataNucleus adds this empty
value to the member attribute. This value is also filtered when DataNucleus reads the object from
LDAP.

LDAP : Relationship Mapping by Attribute

Another way to model relationships between LDAP entries is to use attribute matching. This means
two entries have the same attribute values. An example of this type of relationship is used by
posixGroup and posixAccount object classes were posixGroup.memberUid points to
posicAccount.uid.

We just describe 1-N relationship mapping here and distinguish between unidirectional and
bidirectional relationships. The metadata for 1-1, N-1 and M-N relationship mapping looks identical,
the only difference is whether single-valued or multi-valued attributes are used in LDAP to store

52

the relationships.

e Unidirectional

* Bidirectional

Mapping by Attribute: 1-N Unidirectional

We use the following example LDAP tree and Java classes:

dc=example,dc=com
- ou=Departments

|-- ou=Sales

|—— ou= Eng1neer1ng
|--

ou=Employees

|-- uid=bbunny
|-- uid=dduck
|-— uid= sgonzales
|--

We have a flat LDAP tree with one container for all the departments and one container for all the

public class Department {
String name;

Set<Employee> employees;

}

public class Employee {
String firstName;
String lastName;
String fullName;
String uid;

employees. We have two Java classes, Department and Employee. The Department class contains
a Collection of type Employee. The Employee knows nothing about the Department it belongs to.

There are 2 ways that we can persist this relationship in LDAP because the reference could be

stored at the one or at the other LDAP entry.

Owner Object Side

One way is to store the reference at the owner object side, in our case at the department entry. This
is possible since LDAP allows multi-valued attributes. The example department entry looks like this:

dn: ou=Sales,ou=Departments,dc=example,dc=com
object(Class: top

object(Class: organizationalUnit

objectClass: extensibleObject

ou: Sales

memberUid: bbunny

memberUid: dduck

Our JDO metadata looks like this:

53

#ldap_attribute_unidirectional
#ldap_attribute_bidirectional

<jdo>
<package name="com.example">
<class name="Department" table="ou=Departments,dc=example,dc=com"
schema="top,organizationalUnit,extensibleObject">
<field name="name" primary-key="true" column="ou" />
<field name="employees" column="memberUid">
<join column="uid" />
</field>
</class>
<class name="Employee" table="ou=Employees,dc=example,dc=com"
schema="top,person,organizationalPerson, inetOrgPerson">

<field name="fullName" primary-key="true column="cn" />
<field name="firstName" column="givenName" />
<field name="lastName" column="sn" />
<field name="uid" column="uid" />
</class>
</package>
</jdo>

So we define that the attribute memberUid at the department entry should be used to persist the
relationship of field employees

The important thing here is the <join> tag and its column. Firstly it signals DataNucleus to use
attribute mapping. Secondly it specifies the attribute at the other side that should be used for
relationship mapping. In our case, when we establish a relationship between a Department and an
Employee, the uid value of the employee entry is stored in the memberUid attribute of the
department entry.

Non-Owner Object Side

Another possible way is to store the reference at the non-owner object side, in our case at the
employee entry. The example employee entry looks like this:

dn: uid=bbunny,ou=Employees,dc=example,dc=com
objectClass: top

object(Class: person

objectClass: organizationalPerson
object(Class: inetOrgPerson

uid: bbunny

cn: Bugs Bunny

givenName: Bugs

sn: Bunny

departmentNumber: Sales

Our JDO metadata looks like this:

54

<jdo>
<package name="com.example">
<class name="Department" table="ou=Departments,dc=example,dc=com'
schema="top,organizationalUnit">
<field name="name" primary-key="true" column="ou" />
<field name="employees">
<element column="departmentNumber" />
<join column="ou" />
</field>
</class>
<class name="Employee" table="ou=Employees,dc=example,dc=com"
schema="top, person,organizationalPerson, inetOrgPerson">
<field name="fullName" primary-key="true column="cn" />
<field name="firstName" column="givenName" />
<field name="lastName" column="sn" />
<field name="uid" column="uid" />
</class>
</package>
</jdo>

We need to define the relationship at the department metadata because the employee doesn’t know
about the department it belongs to.

With the <element> tag we specify that the relationship should be persisted at the other side and the
column attribute defines the LDAP attribute to use. In this case the relationship is persisted in the
departmentNumber attribute at the employee entry.

The important thing here is the <join> tag and its column. As before it signals DataNucleus to use
attribute mapping. Now, as the relation is persisted at the <u>other</u> side, it specifies the
attribute at <u>this</u> side that should be used for relationship mapping. In our case, when we
establish a relationship between a Department and an Employee, the ou value of the department
entry is stored in the departmentNumber attribute of the employee entry.

Mapping by Attribute : 1-N Bidirectional

We use the following example LDAP tree and Java classes:

55

dc=example,dc=com public class Department {
String name;
-- ou=Departments Set<Employee> employees;
|-- ou=Sales }
|-— ou= Eng1neer1ng
| -- public class Employee {

|
|
|
|
|
| String firstName;
|
|
|
|
|

- ou=Employees String lastName;
| -- uid=bbunny String fullName;
| -- uid=dduck String uid;
|—— uid= sgonzales Department department;
|-- }

We have a flat LDAP tree with one container for all the departments and one container for all the
employees. We have two Java classes, Department and Employee. The Department class contains
a Collection of type Employee. Now each Employee has a reference to its Department.

It is possible to persist this relationship on both sides.

dn: uid=bbunny,ou=Employees,dc=example,dc=com
objectClass: top

object(Class: person

objectClass: organizationalPerson
object(Class: inetOrgPerson

uid: bbunny

cn: Bugs Bunny

givenName: Bugs

sn: Bunny

departmentNumber: Sales

56

<jdo>
<package name="com.example">
<class name="Department" table="ou=Departments,dc=example,dc=com'
schema="top,organizationalUnit">
<field name="name" primary-key="true" column="ou" />
<field name="employees" mapped-by="department" />
</class>
<class name="Employee" table="ou=Employees,dc=example,dc=com"
schema="top,person,organizationalPerson, inetOrgPerson">
<field name="fullName" primary-key="true column="cn" />
<field name="firstName" column="givenName" />
<field name="lastName" column="sn" />
<field name="uid" column="uid" />
<field name="department" column="departmentNumber">
<join column="ou" />
</field>
</class>
</package>
</jdo>

In this case we store the relation at the employee entry side in a single-valued attribute
departmentNumber. With the <join> tag and its column we specify that the ou value of the
department entry should be used as join value. Also note that employee field of Department is
mapped-by the department field of the Employee.

LDAP : Relationship Mapping by Hierarchy
(DEPRECATED)

As LDAP is a hierarchical data store it is possible to model relationships between LDAP entries
using hierarchies. For example organisational structures like departments and their employees are
often modeled hierarchical in LDAP. It is possible to map 1-1 and N-1/1-N relationships using LDAP
hierarchies.

The main challenge with hierarchical mapping is that the distinguished name (DN) of children
depends on the DN of their parent. Therefore each child class needs a reference to the parent class.
The parent class metadata defines a (fixed) LDAP DN that is used as container for all objects of the
parent type. The child class metadata contains a dynamic part in its DN definition. This dynamic
part contains the name of the field holding the reference to the parent object, the name is
surrounded by curly braces. This dynamic DN is the indicator for DataNucleus to use hierarchical
mapping. The reference field itself won’t be persisted as attribute because it is used as dynamic
parameter. If you query for child objects DataNucleus starts a larger LDAP search to find the objects
(the container DN of the parent class as search base and subtree scope).

Child objects are automatically dependent. If you delete the parent object all child

0 objects are automatically deleted. If you null out the child object reference in the
parent object or if you remove the child object from the parents collection, the
child object is automatically deleted.

57

Mapping by Hierarchy : N-1 Unidirectional (DEPRECATED)

This kind of mapping could be used if your LDAP tree has a huge number of child objects and you
only work with these child objects.

We use the following example LDAP tree and Java classes:

dc=example,dc=com public class Department {
| String name;

|-- ou=Sales }

| |-- cn=Bugs Bunny

| |—— cn= Daffy Duck public class Employee {

| |-- String firstName;

| String lastName;

|-- ou=Engineering String fullName;

| |-- cn=Speedy Gonzales Department department;
I |-- ... }

|--

In the LDAP tree we have departments (Sales and Engineering) and each department holds some
associated employees. In our Java classes each Employee object knows its Department but not
vice-versa.

The JDO metadata looks like this:

<jdo>
<package name="com.example">
<class name="Department" table="dc=example,dc=com"
schema="top,organizationalUnit">
<field name="name" primary-key="true" column="ou" />
</class>

<class name="Employee" table="{department}"
schema="top,person,organizationalPerson,inetOrgPerson">
<field name="fullName" primary-key="true column="cn" />
<field name="firstName" column="givenName" />
<field name="lastName" column="sn" />
<field name="department"/>
</class>
</package>
</jdo>

The Department objects are persisted directly under dc=example,dc=com. The Employee class has
a dynamic DN definition {department}. So the DN of the Department instance is used as container
for Employee objects.

58

Mapping by Hierarchy : N-1 (1-N) Bidirectional (DEPRECATED)

If you need a reference from the parent object to the child objects you need to define a bidirectional
relationship.

The example LDAP tree and Java classes looks like this:

dc=example,dc=com public class Department {
String name;
- ou=Sales Set<Employee> employees;

|

|-- o

| |-- cn=Bugs Bunny }

| |-- cn= Daffy Duck

| |-- public class Employee {
| String firstName;
|-- ou=Engineering String lastName;
| |-- cn=Speedy Gonzales String fullName;
5
|--

|-- ... Department department;

Now the Department class has a Collection containing references to its *Employee*s.

The JDO metadata looks like this:

<jdo>
<package name="com.example">
<class name="Department" table="dc=example,dc=com"
schema="top,organizationalUnit">
<field name="name" primary-key="true" column="ou" />
<field name="employees" mapped-by="department"/>
</class>

<class name="Employee" table="{department}"
schema="top,person,organizationalPerson,inetOrgPerson">
<field name="fullName" primary-key="true column="cn" />
<field name="firstName" column="givenName" />
<field name="lastName" column="sn" />
<field name="department"/>
</class>
</package>
</jdo>

We added a new employees field to the Department class that is mapped-by the department field of
the Employee class.

Please note: When loading the parent object all child object are loaded immediately. For a large
number of child entries this may lead to performance and/or memory problem:s.

59

Mapping by Hierarchy : 1-1 Unidirectional (DEPRECATED)
1-1 unidirectional mapping is very similar to N-1 unidirectional mapping.

We use the following example LDAP tree and Java classes:

String password;
Person person;

dc=example,dc=com public class Person {
| String firstName;

|-- ou=People String lastName;

| |-- cn=Bugs Bunny String fullName;

| | |-- uid=bbunny }

|

| |-- cn=Daffy Duck public class Account {
| | |-- uid=dduck String uid;

|

|-

In the LDAP tree we have persons and each person has one account. Each Account object knows to
which Person it belongs to, but not vice-versa.

The JDO metadata looks like this:

<jdo>
<package name="com.example">
<class name="Person" table="ou=People,dc=example,dc=com"
schema="top,person,organizationalPerson,inetOrgPerson">
<field name="fullName" primary-key="true column="cn" />
<field name="firstName" column="givenName" />
<field name="lastName" column="sn" />
</class>

<class name="Account" table="{person}"
schema="top,account,simpleSecurityObject">
<field name="uid" primary-key="true column="uid" />
<field name="password" column="userPasword" />
<field name="person" />
</class>
</package>
</jdo>

The Person objects are persisted directly under ou=People,dc=example,dc=com. The Account class
has a dynamic DN definition {person}. So the DN of the Person instance is used as container for the
Account object.

Mapping by Hierarchy : 1-1 Bidirectional (DEPRECATED)

If you need a reference from the parent class to the child class you need to define a bidirectional

60

relationship.

The example LDAP tree and Java classes looks like this:

String password;
Person person;

dc=example,dc=com public class Person {
| String firstName;
|-- ou=People String lastName;
| String fullName;

| |-- cn=Bugs Bunny Account account;

| | |-- uid=bbunny }

|

| |-- cn=Daffy Duck public class Account {
| | |-- uid=dduck String uid;

|

|-

Now the Person class has a reference to its Account.

The JDO metadata looks like this:

<jdo>
<package name="com.example">
<class name="Person" table="ou=People,dc=example,dc=com"
schema="top, person,organizationalPerson,inetOrgPerson">
<field name="fullName" primary-key="true column="cn" />
<field name="firstName" column="givenName" />
<field name="lastName" column="sn" />
<field name="account" mapped-by="person" />
</class>

<class name="Account" table="{person}"
schema="top,account,simpleSecurityObject">
<field name="uid" primary-key="true column="uid" />
<field name="password" column="userPasword" />
<field name="person" />
</class>
</package>
</jdo>

We added a new account field to the Person class that is mapped-by the person field of the Account
class.

LDAP : Embedded Objects

With JDO it is possible to persist field(s) as embedded. This may be useful for LDAP datastores
where often many attributes are stored within one entry however logically they describe different
objects.

61

Let’s assume we have the following entry in our directory:

dn: cn=Bugs Bunny,ou=Employees,dc=example,dc=com
objectClass: top

object(Class: person

objectClass: organizationalPerson
object(Class: inetOrgPerson

cn: Bugs Bunny

givenName: Bugs

sn: Bunny

postalCode: 3578

1: Hollywood

street: Sunset Boulevard

uid: bbunny

userPassword: secret

This entry contains multiple type of information: a person, its address and its account data. So we
will create the following Java classes:

public class Employee {
String firstName;
String lastName;
String fullName;
Address address;
Account account;

}

public class Address {
int zip;
String city
String street;

}

public class Account {
String 1id;
String password;

The JDO metadata to map these objects to one LDAP entry would look like this:

62

<jdo>
<package name="com.example">
<class name="Person" table="ou=Employees,dc=example,dc=com"
schema="top, person,organizationalPerson, inetOrgPerson">
<field name="fullName" primary-key="true" column="cn" />
<field name="firstName" column="givenName" />
<field name="lastName" column="sn" />
<field name="account">
<embedded null-indicator-column="uid">
<field name="1id" column="uid" />
<field name="password" column="userPassword" />
</embedded>
</field>
<field name="address">
<embedded null-indicator-column="1">
<field name="zip" column="postalCode" />
<field name="city" column="1" />
<field name="street" column="street" />
</embedded>
</field>
</class>
<class name="Account" embedded-only="true">
<field name="uid" />
<field name="password" />
</class>
<class name="Address" embedded-only="true">
<field name="zip" />
<field name="city" />
<field name="street" />
</class>
</package>
</jdo>

63

NeoDatis Datastores

NeoDatis is an object-oriented database for Java and .Net. It is simple and fast and supports various
query mechanismes.

DataNucleus supports persisting/retrieving objects to Neodatis datastores (using the datanucleus-
neodatis plugin).

The jars required to use DataNucleus NeoDatis persistence are datanucleus-core, datanucleus-api-
jdo/datanucleus-api-jpa, datanucleus-neodatis and neodatis.

Datastore Connection

DataNucleus supports 2 modes of operation of neodatis - file-based, and client-server based. In
order to do so and to fit in with the JDO/JPA APIs we have defined the following means of
connection.

The following persistence properties will connect to a file-based Neodatis running on your local
machine

datanucleus.ConnectionURL=neodatis:file:neodatisdb.odb

Replacing neodatisdb.odb by your filename for the datastore, and can be absolute OR relative.
The following persistence properties will connect to embedded-server-based NeoDatis running

with a local file

datanucleus.ConnectionURL=neodatis:server:{my_neodatis_file}
datanucleus.ConnectionUserName=
datanucleus.ConnectionPassword=

The filename {my_neodatis_file} can be absolute OR relative.

The following persistence properties will connect as a client to a TCP/IP NeoDatis Server

datanucleus.ConnectionURL=neodatis:{neodatis_host}:{neodatis_port}/{identifier}
datanucleus.ConnectionUserName=
datanucleus.ConnectionPassword=

Neodatis doesn’t itself use such URLSs so it was necessary to define this DataNucleus-specific way of
addressing Neodatis.

So you create your PersistenceManagerFactory or EntityManagerFactory with these properties.
Thereafter you have the full power of the JDO or JPA APIs at your disposal, for your NeoDatis
datastore.

64

http://www.neodatis.org
https://github.com/datanucleus/datanucleus-neodatis
https://github.com/datanucleus/datanucleus-neodatis
../jdo/persistence.html#pmf
../jpa/persistence.html#emf

Queries

AccessPlatform allows you to query the objects in the datastore using the following

* JDOQL - language based around the objects that are persisted and using Java-type syntax
* JPQL - language based around the objects that are persisted and using SQL-like syntax
* Native - NeoDatis' own type-safe query language

* Criteria - NeoDatis' own Criteria query language

Queries : NeoDatis Native Queries

0 If you choose to use NeoDatis Native Queries then these are not portable to any
other datastore. Use JDOQL/JPQL for portability

NeoDatis provides its own "native" query interface, and if you are using the JDO API you can utilise
this for querying. To take a simple example

// Find all employees older than 31
Query q = pm.newQuery("Native", new NativeQuery()

{
public boolean match(Object e)
{
if (!(e instanceof Employee))
{
return false;
}
return ((Employee)e).getAge() >= 32;
}
public Class getObjectType()
{
return Employee.class;
}
)

List results = (List)q.execute();
So we are utilising the JDO API to generate a query and passing in the NeoDatis "NativeQuery".

Queries : NeoDatis Criteria Queries

0 If you choose to use NeoDatis Criteria Queries then these are not portable to any
other datastore. Use JDOQL/JPQL for portability

NeoDatis provides its own "criteria" query interface, and if you are using the JDO API you can
utilise this for querying. To take a simple example

65

../jdo/query.html#jdoql
../jpa/query.html#jpql
#neodatis_native
#neodatis_criteria

// Find all employees older than 31
Query q = pm.newQuery("Criteria", new CriteriaQuery(Employee.class, Where.ge("age",

32)));

List results = (List)qg.execute();

So we are utilising the JDO API to generate a query and passing in the NeoDatis "CriteriaQuery".

Known Limitations

The following are known limitations of the current implementation

* NeoDatis doesn’t have the concept of an "unloaded" field and so when you request an object
from the datastore it comes with its graph of objects. Consequently there is no "lazy loading"
and the consequent impact that can have on memory utilisation.

66

	Datastores Guide (v5.0)
	Table of Contents
	RDBMS Datastores
	DB2
	MySQL
	SQL Server
	Oracle
	Sybase
	SAP SQL Anywhere
	HSQLDB
	H2
	Informix
	PostgreSQL
	PostgreSQL with PostGIS extension
	Apache Derby
	Firebird
	NuoDB
	SAPDB/MaxDB
	SQLite
	Virtuoso
	Pointbase
	JDBC Driver parameters
	RDBMS : Statement Batching

	Cassandra Datastores
	Queries : Cassandra CQL Queries

	Excel Datastores
	OOXML Datastores
	ODF Datastores
	Worksheet Headers

	XML Datastores
	Mapping : XML Datastore Mapping

	JSON Datastores
	Mapping : HTTP Mapping
	Mapping : Persistent Classes

	Amazon S3 Datastores
	References

	Google Storage Datastores
	HBase Datastores
	Field/Column Naming
	MetaData Extensions
	References

	MongoDB Datastores
	Mapping : Embedded Persistable fields
	Mapping : Embedded Collection elements
	References

	Neo4j Datastores
	Persistence Implementation
	Query Implementation

	LDAP Datastores
	Datastore Connection
	Queries
	Mapping : LDAP Datastore Mapping
	Mapping : Relationships
	Examples
	Known Limitations
	LDAP : Relationship Mapping by DN
	LDAP : Relationship Mapping by Attribute
	LDAP : Relationship Mapping by Hierarchy (DEPRECATED)
	LDAP : Embedded Objects

	NeoDatis Datastores
	Datastore Connection
	Queries
	Queries : NeoDatis Native Queries
	Queries : NeoDatis Criteria Queries
	Known Limitations

