
JPA Mapping Guide (v5.0)

Table of Contents
Classes . 2

Entity Class . 2

MappedSuperclass. 2

Embeddable Class . 3

Persistence Aware Class . 3

Read-Only Class . 4

Inheritance . 5

Discriminator . 6

Strategy : SINGLE_TABLE . 6

Strategy : JOINED . 8

Strategy : TABLE_PER_CLASS . 10

Mapped Superclasses . 11

Auditing . 13

Fields/Properties . 14

Persistent Fields . 14

Persistent Properties. 14

Making a field/property non-persistent . 15

Field/Property Positioning. 15

Making a field/property read-only . 16

Field Types . 17

Primitive and java.lang Types . 17

java.math types . 19

Temporal Types (java.util, java.sql. java.time, Jodatime) . 19

Collection/Map types. 21

Enums. 22

Geospatial Types . 23

Other Types . 30

Arrays . 30

Generic Type Variables . 31

JPA Attribute Converters . 32

Types extending Collection/Map . 34

Identity . 37

Application Identity . 37

Datastore Identity . 43

Nondurable Identity . 44

Derived Identity Relationships. 45

Versioning . 58

Version Field/Property . 58

Surrogate Version for Class . 58

Value Generation . 60

ValueGeneration Strategy AUTO . 60

ValueGeneration Strategy SEQUENCE . 61

ValueGeneration Strategy IDENTITY . 62

ValueGeneration Strategy TABLE . 63

ValueGeneration Strategy "Custom" . 65

1-1 Relations . 67

Unidirectional . 67

Bidirectional . 69

1-N Relations . 72

equals() and hashCode(). 72

Collection<Entity> Unidirectional JoinTable . 73

Collection<Entity> Unidirectional FK . 75

Collection<Entity> Bidirectional JoinTable . 76

Collection<Entity> Bidirectional FK . 78

Using a List . 80

Collection<Simple> via JoinTable . 81

Collection<Simple> using AttributeConverter via column . 81

Collection<Entity> via Shared JoinTable . 83

Collection<Entity> via Shared FK . 85

Map<Simple, Entity> via JoinTable . 86

Map<Simple, Simple> via JoinTable . 87

Map<Simple, Simple> using AttributeConverter via column . 88

Map<Entity, Entity> via JoinTable . 89

Map<Entity, Simple> via JoinTable . 91

Map<Simple,Entity> Unidirectional FK (key stored in value) . 91

Map<Simple,Entity> Bidirectional FK (key stored in value) . 93

N-1 Relations . 96

Unidirectional with ForeignKey . 96

Unidirectional with JoinTable . 97

Bidirectional . 99

M-N Relations . 100

equals() and hashCode() . 101

Using Set . 101

Using Ordered Lists. 102

Arrays . 105

Single Column Arrays (serialised) . 105

Simple array stored in join table . 106

Entity array persisted into Join Tables . 107

Entity array persisted using Foreign-Keys . 108

Interfaces . 110

1-1 Interface Relation . 111

1-N Interface Relation . 113

Dynamic Schema Updates (RDBMS) . 113

java.lang.Object . 115

1-1/N-1 Object Relation. 115

1-N Object Relation . 117

Serialised Objects . 117

Embedded Fields . 118

Embedding entities (1-1) . 119

Embedding Nested Entities . 122

Embedding Collection Elements . 124

Embedding Map Keys/Values . 127

Serialised Fields . 130

Serialised Fields . 130

Serialise to File . 131

Schema . 133

Tables and Column names . 133

Column nullability and default values . 135

Column types . 136

Column Position. 137

RDBMS : Views . 137

RDBMS : Datastore Types . 139

Secondary Tables. 144

Constraints . 147

Datastore Identifiers . 150

To implement a persistence layer with JPA you firstly need to map the classes
and fields/properties that are involved in the persistence process. This can be as
simple as marking the classes as an @Entity, or you can configure down to the
fine detail of precisely what schema it maps on to. The following sections deal
with the many options available. This guide takes you through the many
metadata options.

When mapping a class for JPA you can make use of metadata. This metadata can
be Java annotations, or can be XML metadata, or a mixture of both. This is very
much down to your own personal preference but we try to present both ways
here.



We advise trying to keep schema information out of annotations,
so that you avoid tying compiled code to a specific datastore. That
way you retain datastore-independence. This may not be a
concern for your project however.



Whilst the JPA spec only allows you to specify your mapping
information using JPA metadata (annotations, or orm.xml),
DataNucleus JPA also allows you the option of using JDO metadata
(annotations or JDO XML metadata). This is provided as a way of
easily migrating across to JPA from JDO, for example. Consult the
DataNucleus JDO mappings docs for details.

1

../jdo/mapping.html

Classes
We have the following types of classes in DataNucleus JPA.

• Entity - persistable class with full control over its persistence.

• MappedSuperclass - persistable class that will not be persisted into its own table simply
providing some fields to be persisted. Consequently an inheritance tree cannot just have a
mapped superclass on its own.

• Embeddable - persistable class that is only persistable embedded into an entity class.

• PersistenceAware - a class that is not itself persisted, but that needs to access internals of
persistable classes. This is a DataNucleus extension, not part of the JPA standard.


In strict JPA all persistable classes need to have a default constructor. With
DataNucleus JPA this is not necessary, since all classes are enhanced before
persistence and the enhancer adds on a default constructor if one is not defined.

Entity Class
Let’s take a sample class (Hotel) as an example. We can define a class as persistable using either
annotations in the class, or XML metadata. Using annotations

@Entity
public class Hotel
{
 ...
}

or using XML metadata

<entity class="org.datanucleus.test.Hotel">
 ...
</entity>

MappedSuperclass
Say we have an abstract base class Building with concrete subclass Hotel (as above). We want to
persist some fields of Building, but it is abstract so will not have any objects of that type. So we
make the class a MappedSuperclass, like this

2

#entity
#mapped_superclass
#embeddable
#persistence_aware

@MappedSuperclass
public abstract class Building
{
 ...
}

or using XML metadata

<mapped-superclass class="org.datanucleus.test.Building">
 ...
</mapped-superclass>

This is of particular relevance when considering inheritance.

Embeddable Class
Here we have a class ConstructionDetails that we never need to persist individually, and it will only
ever be persisted as part of an owner object (in this case Building). Since information from objects
of this class will be persisted, we need to mark the class as Embeddable, like this

@Embeddable
public class ConstructionDetails
{
 ...
}

or using XML metadata

<embeddable class="org.datanucleus.test.ConstructionDetails">
 ...
</embeddable>

and hereafter we can persist fields of type ConstructionDetails, as per the Embedded Object guide.

Persistence Aware Class

With JPA you cannot access public fields of classes. DataNucleus allows an extension to permit this,
but such classes need special enhancement. To allow this you need to annotate the class that will
access these public fields (assuming it isn’t an Entity) with the DataNucleus extension annotation
@PersistenceAware, as follows

3

#embedded

@PersistenceAware
public class MyClassThatAccessesPublicFields
{
 ...
}

See also :-

• Annotations reference for @PersistenceAware

Read-Only Class

You can, if you wish, make a class read-only. This is a DataNucleus extension and you set it as
follows

@Entity
@Extension(key="read-only", value="true")
public class MyClass
{
 ...
}

4

annotations.html#PersistenceAware

Inheritance
In Java it is a normal situation to have inheritance between classes. With JPA you have choices to
make as to how you want to persist your classes for the inheritance tree. For each inheritance tree
(for the root class) you select how you want to persist those classes information. You have the
following choices.

• The default strategy is to select a class to have its fields persisted in the table of the base class.
There is only one table per inheritance hierarchy. In JPA this is known as SINGLE_TABLE

• The next way is to have a table for each class in the inheritance hierarchy, and for each table to
only hold columns for the fields of that class. Fields of superclasses are persisted into the table
of the superclass. Consequently to get all field values for a subclass object a join is made of all
tables of superclasses. In JPA this is referred to as JOINED

• The third way is like JOINED except that each table will also contain columns for all inherited
fields. In JPA this is referred to as TABLE_PER_CLASS

In order to demonstrate the various inheritance strategies we need an example. Here are a few
simple classes representing products in a (online) store. We have an abstract base class, extending
this to provide something that we can represent any product by. We then provide a few
specialisations for typical products. We will use these classes later when defining how to persistent
these objects in the different inheritance strategies

As mentioned, the default JPA strategy is "SINGLE_TABLE", namely that the base class will have a
table and all subclasses will be persisted into that same table. So if you don’t specify an "inheritance
strategy" in your root class this is what you will get.

5

#inheritance_singletable
#inheritance_joined
#inheritance_tableperclass


You must specify the identity of objects in the root persistable class of the
inheritance hierarchy. You cannot redefine it down the inheritance tree

See also:-

• MetaData reference for <inheritance> element

• MetaData reference for <discriminator-column> element

• Annotations reference for @Inheritance

• Annotations reference for @DiscriminatorColumn

Discriminator

 Applicable to RDBMS, HBase, MongoDB

A discriminator is an extra "column" stored alongside data to identify the class of which that
information is part. It is useful when storing objects which have inheritance to provide a quick way
of determining the object type on retrieval. A discriminator in JPA will store the specified value (or
the class name if you provide no value). You specify a discriminator as follows

<entity name="mydomain.Product">
 <discriminator-column name="OBJECT" discriminator-type="STRING"/>
 <discriminator-value>MyClass</discriminator-value>
 ...

or with annotations

@Entity
@DiscriminatorColumn(name="OBJECT_TYPE", discriminatorType=DiscriminatorType.STRING)
@DiscriminatorValue("MyClass")
public class Product {...}

Strategy : SINGLE_TABLE

 Applicable to RDBMS

"SINGLE_TABLE" strategy is where the root class has a table and all subclasses are also persisted
into that table. This corresponds to JDOs "new-table" for the root class and "superclass-table" for all
subclasses. This has the advantage that retrieval of an object is a single DB call to a single table. It
also has the disadvantage that the single table can have a very large number of columns, and
database readability and performance can suffer, and additionally that a discriminator column is
required.

6

metadata_xml.html#inheritance
metadata_xml.html#discriminator-column
annotations.html#Inheritance
annotations.html#DiscriminatorColumn


When using SINGLE-TABLE DataNucleus will always use a discriminator (default
column name is DTYPE).

In our example, lets ignore the AbstractProduct class for a moment and assume that Product is
the base class (with the "id"). We have no real interest in having separate tables for the Book and
CompactDisc classes and want everything stored in a single table PRODUCT. We change our
MetaData as follows

<entity name="Product">
 <inheritance strategy="SINGLE_TABLE"/>
 <discriminator-value>PRODUCT</discriminator-value>
 <discriminator-column name="PRODUCT_TYPE" discriminator-type="STRING"/>
 <attributes>
 <id name="id">
 <column name="PRODUCT_ID"/>
 </id>
 ...
 </attributes>
</entity>
<entity name="Book">
 <discriminator-value>BOOK</discriminator-value>
 ...
</entity>
<entity name="TravelGuide">
 <discriminator-value>TRAVELGUIDE</discriminator-value>
 ...
</entity>
<entity name="CompactDisc">
 <discriminator-value>COMPACTDISC</discriminator-value>
 ...
</entity>

or using annotations

7

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorValue("PRODUCT")
@DiscriminatorColumn(name="PRODUCT_TYPE", discriminatorType=DiscriminatorType.STRING)
public class Product {...}

@Entity
@DiscriminatorValue("BOOK")
public class Book {...}

@Entity
@DiscriminatorValue("TRAVELGUIDE")
public class TravelGuide {...}

@Entity
@DiscriminatorValue("COMPACTDISC")
public class CompactDisc {...}

This change of use of the inheritance element has the effect of using the PRODUCT table for all
classes, containing the fields of Product, Book, CompactDisc, and TravelGuide. You will also note
that we used a /discriminator-column_ element for the Product class. The specification above will
result in an extra column (called PRODUCT_TYPE) being added to the PRODUCT table, and
containing the "discriminator-value" of the object stored. So for a Book it will have "BOOK" in that
column for example. This column is used in discriminating which row in the database is of which
type. The final thing to note is that in our classes Book and CompactDisc we have a field that is
identically named. With CompactDisc we have defined that its column will be called DISCTITLE
since both of these fields will be persisted into the same table and would have had identical names
otherwise - this gets around the problem.

In the above example, when we insert a TravelGuide object into the datastore, a row will be
inserted into the PRODUCT table only.

Strategy : JOINED

 Applicable to RDBMS

"JOINED" strategy means that each entity in the inheritance hierarchy has its own table and that the

8

table of each class only contains columns for that class. Inherited fields are persisted into the tables
of the superclass(es). This corresponds to JDOs "new-table" (for all classes in the inheritance
hierarchy). This has the advantage of being the most normalised data definition. It also has the
disadvantage of being slower in performance since multiple tables will need to be accessed to
retrieve an object of a sub-type. Let’s try an example using the simplest to understand strategy
JOINED. We have the classes defined above, and we want to persist our classes each in their own
table. We define the Meta-Data for our classes like this</p>

<entity class="AbstractProduct">
 <inheritance strategy="JOINED"/>
 <attributes>
 <id name="id">
 <column name="PRODUCT_ID"/>
 </id>
 ...
 </attributes>
</entity>
<entity class="Product">
 ...
</entity>
<entity class="Book">
 ...
</entity>
<entity class="TravelGuide">
 ...
</entity>
<entity class="CompactDisc">
 ...
</entity>

or using annotations

@Entity
@Inheritance(strategy=InheritanceType.JOINED)
public class Product {...}

So we will have 5 tables - ABSTRACTPRODUCT, PRODUCT, BOOK, COMPACTDISC, and TRAVELGUIDE.
They each contain just the fields for that class (and not any inherited fields, except the identity to
join with).

9

In the above example, when we insert a TravelGuide object into the datastore, a row will be
inserted into ABSTRACTPRODUCT, PRODUCT, BOOK, and TRAVELGUIDE.

Strategy : TABLE_PER_CLASS

 Applicable to all datastores

This strategy is like "JOINED" except that in addition to each class having its own table, the table
also holds columns for all inherited fields. So taking the same classes as used above

10

<entity class="AbstractProduct">
 <inheritance strategy="TABLE_PER_CLASS"/>
 <attributes>
 <id name="id">
 <column name="PRODUCT_ID"/>
 </id>
 ...
 </attributes>
</entity>
<entity class="Product">
 ...
</entity>
<entity class="Book">
 ...
</entity>
<entity class="TravelGuide">
 ...
</entity>
<entity class="CompactDisc">
 ...
</entity>

or using annotations

@Entity
@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)
public class Product {...}

This then implies a datastore schema as follows

So any object of explicit type Book is persisted into the table BOOK. Similarly any TravelGuide is
persisted into the table TRAVELGUIDE, etc. In addition if any class in the inheritance tree is abstract
then it won’t have a table since there cannot be any instances of that type. DataNucleus currently
has limitations when using a class using this inheritance as the element of a collection.

Mapped Superclasses
JPA defines entities called "mapped superclasses" for the situation where you dont persist an actual
object of a superclass type but that all subclasses of that type that are entities will also persist the
values for the fields of the "mapped superclass". That is a "mapped superclass" has no table to store

11

its objects in a datastore. Instead its fields are stored in the tables of its subclasses. Let’s take an
example

<mapped-superclass class="AbstractProduct">
 <attributes>
 <id name="id">
 <column name="PRODUCT_ID"/>
 </id>
 ...
 </attributes>
</mapped-superclass>

<entity class="Product">
 ...
</entity>

In this case we will have a table for Product and the fields of AbstractProduct will be stored in this
table. If the mapping information (column names etc) for these fields need setting then you should
use <attribute-override> in the MetaData for Product.

12

Auditing

 Applicable to RDBMS

With standard JPA you have no annotations available to automativelly add timestamps into the
datastore against each record when it is persisted or updated. Whilst you can do this manually,
setting the field(s) in prePersist callbacks etc, DataNucleus provides some simple annotations to
make it simpler still.

import org.datanucleus.api.jpa.annotations.CreateTimestamp;
import org.datanucleus.api.jpa.annotations.UpdateTimestamp;

@Entity
public class Hotel
{
 @Id
 long id;

 @CreateTimestamp
 Timestamp createTimestamp;

 @UpdateTimestamp
 Timestamp updateTimestamp;

 ...
}

In the above example we have 2 fields in the class that will have columns in the datastore. The field
createTimestamp will be persisted at INSERT with the Timestamp of the insert. The field
updateTimestamp will be persisted whenever any update is made to the object in the datastore,
with the Timestamp of the update.

13

Fields/Properties
Once we have defined a class to be persistable (as either Entity, MappedSuperclass, or Embedded),
we need to define how to persist the different fields/properties that are to be persisted. There are
two distinct modes of persistence definition; the most common uses fields, whereas an alternative
uses properties.

Persistent Fields
The most common form of persistence is where you have a field in a class and want to persist it to
the datastore. With this mode of operation DataNucleus will persist the values stored in the fields
into the datastore, and will set the values of the fields when extracting it from the datastore.


Requirement : you have a field in the class. This can be public, protected, private
or package access, but cannot be static or final.

An example of how to define the persistence of a field is shown below

@Entity
public class MyClass
{
 @Basic
 Date birthday;

 @Transient
 String someOtherField;
}

So, using annotations, we have marked this class as persistent, and the field birthday also as
persistent, whereas field someOtherField is not persisted. Using XML MetaData we would have done

<entity name="mydomain.MyClass">
 <attributes>
 <basic name="birthday"/>
 <transient name="someOtherField"/>
 </attributes>
</entity>

Please note that the field Java type defines whether it is, by default, persistable.

Persistent Properties
A second mode of operation is where you have Java Bean-style getter/setter for a property. In this
situation you want to persist the output from getXXX to the datastore, and use the setXXX to load up
the value into the object when extracting it from the datastore.

14


Requirement : you have a property in the class with Java Bean getter/setter
methods. These methods can be public, protected, private or package access, but
cannot be static. The class must have BOTH getter AND setter methods.

An example of how to define the persistence of a property is shown below

@Entity
public class MyClass
{
 @Basic
 Date getBirthday()
 {
 ...
 }

 void setBirthday(Date date)
 {
 ...
 }
}

So, using annotations, we have marked this class as persistent, and the getter is marked as
persistent. By default a property is non-persistent, so we have no need in specifying the
someOtherField as transient. Using XML MetaData we would have done

<entity name="mydomain.MyClass">
 <attributes>
 <basic name="birthday"/>
 </attributes>
</entity>

Making a field/property non-persistent
If you have a field/property that you don’t want to persist, just mark it as transient, like this

 @Transient
 String unimportantField;

Field/Property Positioning

With some datastores (notably spreadsheets) it is desirable to be able to specify the relative position
of a column. The default (for DataNucleus) is just to put them in ascending alphabetical order. JPA
doesn’t allow configuration of this, but DataNucleus provides the following vendor extension. It is

15

currently only possible using (DataNucleus) annotations

@Entity
@Table(name="People")
public class Person
{
 @Id
 @ColumnPosition(0)
 long personNum;

 @ColumnPosition(1)
 String firstName;

 @ColumnPosition(2)
 String lastName;
}

Making a field/property read-only

If you want to make a member read-only you can do it like this.

<entity name="mydomain.MyClass">
 <attributes>
 <basic name="myField">
 <column insertable="false" updatable="false"/>
 </basic>
 </attributes>
</entity>

or with Annotations

import org.datanucleus.api.jdo.annotations.ReadOnly;

@Entity
public class MyClass
{
 @ReadOnly
 String myField;

}

16

Field Types
When persisting a class, a persistence solution needs to know how to persist the types of each field
in the class. Clearly a persistence solution can only support a finite number of Java types; it cannot
know how to persist every possible type creatable. The JPA specification define lists of types that
are required to be supported by all implementations of those specifications. This support can be
conveniently split into two parts

• Primary Types : An object that can be referred to (object reference, providing a relation) and
that has an "identity" is termed a primary type. DataNucleus supports the following Java types
as primary : any Entity that has its own identity, interface where it represents an Entity, or
java.lang.Object where it represents an Entity.

• Secondary Types : An object that does not have an "identity" is termed a secondary type. This
is something like a String or Date field in a class, or alternatively a Collection (that contains
other objects), or an embedded Entity. The sections below shows the currently supported
secondary java types in DataNucleus. The tables in these sections show

• EAGER : whether the field is retrieved by default when retrieving the object itself.

• Proxy : whether the field is represented by a "proxy" that intercepts any operations to detect
whether it has changed internally (such as Collection, Map).

• PK : whether the field can be used as part of the primary-key



With DataNucleus, all types that we have a way of persisting (i.e listed below) are
default persistent (meaning that you don’t need to annotate them in any way to
persist them). The only field types where this is not always true is for
java.lang.Object, some Serializable types, array of persistables, and java.io.File so
always safer to mark those as persistent.

If you have support for any additional types and would either like to contribute them, or have them
listed here, let us know. Supporting a new type is easy, typically involving a JPA AttributeConverter
if you can easily convert the type into a String or Long. See also the Java Types plugin-point. You
can also define more specific support for it with RDBMS datastores - the RDBMS Java Types plugin-
point

Handling of second-class types uses wrappers and bytecode enhancement with DataNucleus. This
contrasts to what Hibernate uses (proxies), and what Hibernate imposes on you.

Primitive and java.lang Types
All primitive types and wrappers are supported and will be persisted into a single database
"column". Arrays of these are also supported, and can either be serialised into a single column, or
persisted into a join table (dependent on datastore).

17

#attributeconverter
../extensions/extensions.html#java_type
../extensions/extensions.html#rdbms_java_mapping
../extensions/extensions.html#rdbms_java_mapping

Java Type EAGE
R?

Proxy
?

PK? Comments

boolean    Persisted as BOOLEAN, Integer (i.e 1,0),
String (i.e 'Y','N').

byte   

char   

double   

float   

int   

long   

short   

java.lang.Boolean    Persisted as BOOLEAN, Integer (i.e 1,0),
String (i.e 'Y','N').

java.lang.Byte   

java.lang.Character   

java.lang.Double   

java.lang.Float   

java.lang.Integer   

java.lang.Long   

java.lang.Short   

java.lang.Number    Persisted in a column capable of storing a
BigDecimal, and will store to the precision of
the object to be persisted. On reading back
the object will be returned typically as a
BigDecimal since there is no mechanism for
determing the type of the object that was
stored.

java.lang.String   

java.lang.StringBuffer    Persisted as String. The dirty check
mechanism for this type is limited to
immutable mode, which means if you
change a StringBuffer object field, you must
reassign it to the owner object field to make
sure changes are propagated to the
database.

18

Java Type EAGE
R?

Proxy
?

PK? Comments

java.lang.StringBuilder    Persisted as String. The dirty check
mechanism for this type is limited to
immutable mode, which means if you
change a StringBuffer object field, you must
reassign it to the owner object field to make
sure changes are propagated to the
database.

java.lang.Class    Persisted as String.

java.math types
BigInteger and BigDecimal are supported and persisted into a single numeric column by default.

Java Type EAGE
R?

Proxy
?

PK? Comments

java.math.BigDecimal    Persisted as DOUBLE or String. String can be
used to retain precision.

java.math.BigInteger    Persisted as INTEGER or String. String can
be used to retain precision.

Temporal Types (java.util, java.sql. java.time,
Jodatime)
DataNucleus supports a very wide range of temporal types, with flexibility in how they are
persisted.

Java Type EAGE
R?

Proxy
?

PK? Comments

java.sql.Date    Persisted as DATE, String, DATETIME or
Long.

java.sql.Time    Persisted as TIME, String, DATETIME or
Long.

java.sql.Timestamp    Persisted as TIMESTAMP, String or Long.

java.util.Calendar    Persisted as TIMESTAMP (inc Timezone),
DATETIME, String, or as (Long, String)
storing millis + timezone respectively

java.util.GregorianCalendar    Persisted as TIMESTAMP (inc Timezone),
DATETIME, String, or as (Long, String)
storing millis + timezone respectively

java.util.Date    Persisted as DATETIME, String or Long.

19

Java Type EAGE
R?

Proxy
?

PK? Comments

java.util.TimeZone    Persisted as String.

java.time.LocalDateTime    Persisted as DATETIME, String, or
Timestamp.

java.time.LocalTime    Persisted as TIME, String, or Long.

java.time.LocalDate    Persisted as DATE, String, or DATETIME.

java.time.OffsetDateTime    Persisted as Timestamp, String, or
DATETIME.

java.time.OffsetTime    Persisted as TIME, String, or Long.

java.time.MonthDay    Persisted as String, DATE, or as
(Integer,Integer) with the latter being
month+day respectively.

java.time.YearMonth    Persisted as String, DATE, or as
(Integer,Integer) with the latter being
year+month respectively.

java.time.Year    Persisted as Integer, or String.

java.time.Period    Persisted as String.

java.time.Instant    Persisted as TIMESTAMP, String, Long, or
DATETIME.

java.time.Duration    Persisted as String, Double (secs.nanos), or
Long (secs).

java.time.ZoneId    Persisted as String.

java.time.ZoneOffset    Persisted as String.

java.time.ZonedDateTime    Persisted as Timestamp, or String.

org.joda.time.DateTime    Requires datanucleus-jodatime plugin.
Persisted as TIMESTAMP or String.

org.joda.time.LocalTime    Requires datanucleus-jodatime plugin.
Persisted as TIME or String.

org.joda.time.LocalDate    Requires datanucleus-jodatime plugin.
Persisted as DATE or String.

org.joda.time.LocalDateTime    Requires datanucleus-jodatime plugin.
Persisted as TIMESTAMP, or String.

org.joda.time.Duration    Requires datanucleus-jodatime plugin.
Persisted as String or Long.

org.joda.time.Interval    Requires datanucleus-jodatime plugin.
Persisted as String or (TIMESTAMP,
TIMESTAMP).

20

Java Type EAGE
R?

Proxy
?

PK? Comments

org.joda.time.Period    Requires datanucleus-jodatime plugin.
Persisted as String.

Collection/Map types
DataNucleus supports a very wide range of collection, list and map types.

Java Type EAGE
R?

Proxy
?

PK? Comments

java.util.ArrayList    See the 1-N Lists Guide

java.util.BitSet    Persisted as collection by default, but will be
stored as String when the datastore doesn’t
provide for collection storage

java.util.Collection    See the 1-N Collections Guide

java.util.HashMap    See the 1-N Maps Guide

java.util.HashSet    See the 1-N Collections Guide

java.util.Hashtable    See the 1-N Maps Guide

java.util.LinkedHashMap    Persisted as a Map currently. No List-
ordering is supported. See the 1-N Maps
Guide

java.util.LinkedHashSet    Persisted as a Set currently. No List-ordering
is supported. See the 1-N Collections Guide

java.util.LinkedList    See the 1-N Lists Guide

java.util.List    See the 1-N Lists Guide

java.util.Map    See the 1-N Maps Guide

java.util.Properties    See the 1-N Maps Guide

java.util.PriorityQueue    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Lists Guide

java.util.Queue    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Lists Guide

java.util.Set    See the 1-N Collections Guide

java.util.SortedMap    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Maps Guide

21

mapping.html#one_many_list
mapping.html#one_many_relations
mapping.html#one_many_map
mapping.html#one_many_relations
mapping.html#one_many_map
mapping.html#one_many_map
mapping.html#one_many_map
mapping.html#one_many_relations
mapping.html#one_many_list
mapping.html#one_many_list
mapping.html#one_many_map
mapping.html#one_many_map
mapping.html#one_many_list
mapping.html#one_many_list
mapping.html#one_many_relations
mapping.html#one_many_map

Java Type EAGE
R?

Proxy
?

PK? Comments

java.util.SortedSet    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Collections Guide

java.util.Stack    See the 1-N Lists Guide

java.util.TreeMap    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Maps Guide

java.util.TreeSet    The comparator is specifiable via the
metadata extension comparator-name (see
below). See the 1-N Collections Guide

java.util.Vector    See the 1-N Lists Guide

com.google.common.collect.
Multiset

   Requires datanucleus-guava plugin. See the
1-N Collections Guide

 Comparators

Containers that support a Comparator to order the elements of the set can specify it in metadata
like this.

@OneToMany
@Extension(key="comparator-name", value="mydomain.model.MyComparator")
SortedSet<MyElementType> elements;

When instantiating the SortedSet field, it will create it with a comparator of the specified class
(which must have a default constructor).

Enums
By default an Enum is persisted as either a String form (the name), or as an integer form (the
ordinal). You control which form by specifying the @Enumerated annotation (or equivalent XML).

Java Type EAGE
R?

Proxy
?

PK? Comments

java.lang.Enum    Persisted as String (name) or int (ordinal).
Specified via @Enumerated annotation or
equivalent XML.

A DataNucleus extension to this is where you have an Enum that defines its own "value"s for the
different enum options.

22

mapping.html#one_many_relations
mapping.html#one_many_list
mapping.html#one_many_map
mapping.html#one_many_relations
mapping.html#one_many_list
mapping.html#one_many_relations
mapping.html#one_many_relations


Applicable to RDBMS, MongoDB, Cassandra, Neo4j, HBase, Excel, ODF and JSON
currently.

public enum MyColour
{
 RED((short)1), GREEN((short)3), BLUE((short)5), YELLOW((short)8);

 private short value;

 private MyColour(short value)
 {
 this.value = value;
 }

 public short getValue()
 {
 return value;
 }
}

With the default persistence it would persist as String-based, so persisting "RED" "GREEN" "BLUE"
etc. With @Enumerated as ORDINAL it would persist 0, 1, 2, 3 being the ordinal values. If you define
the metadata as

@Extension(key="enum-value-getter", value="getValue")
MyColour colour;

this will now persist 1, 3, 5, 8, being the "value" of each of the enum options. You can use this
method to persist "int", "short", or "String" types.

A DataNucleus extension is available for RDBMS datastores where you are storing the name of the
enum, and to put a CHECK constraint on the column. You specify it like this

@Extension(key="enum-check-constraint", value="true")
MyColour colour;

Geospatial Types
DataNucleus has extensive support for Geospatial types. The datanucleus-geospatial plugin allows
using geospatial and traditional types simultaneously in persistent objects making DataNucleus a
single interface to read and manipulate any business data. The implementation of many of these
spatial types follows the OGC Simple Feature specification, but adds further types where the
datastores support them.

23

http://www.opengeospatial.org/standards/sfa

Java Type EAGE
R?

Proxy
?

PK? Comments

java.awt.Point    Requires datanucleus-geospatial plugin.
Persisted as (int, int) on RDBMS, or as String
elsewhere.

java.awt.Rectangle    Requires datanucleus-geospatial plugin.
Persisted as (int, int, int, int) on RDBMS, or as
String elsewhere.

java.awt.Polygon    Requires datanucleus-geospatial plugin.
Persisted as (int[], int[], int) on RDBMS, or as
String elsewhere.

java.awt.geom.Line2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double)
or (float, float, float, float) on RDBMS, or as
String elsewhere.

java.awt.geom.Point2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double) or (float, float)
on RDBMS, or as String elsewhere.

java.awt.geom.Rectangle2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double)
or (float, float, float, float) on RDBMS, or as
String elsewhere.

java.awt.geom.Arc2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double,
double, double, int) or (float, float, float,
float, float, float, int) on RDBMS, or as String
elsewhere.

java.awt.geom.CubicCurve2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double,
double, double, doubel, double) or (float,
float, float, float, float, float, float, float) on
RDBMS, or as String elsewhere.

java.awt.geom.Ellipse2D    Requires datanucleus-geospatial plugin
Persisted as (double, double, double, double)
or (float, float, float, float) on RDBMS, or as
String elsewhere.

java.awt.geom.QuadCurve2D    Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double,
double, double) or (float, float, float, float,
float, float) on RDBMS, or as String
elsewhere.

24

Java Type EAGE
R?

Proxy
?

PK? Comments

java.awt.geom.RoundRectang
le2D

   Requires datanucleus-geospatial plugin.
Persisted as (double, double, double, double,
double, double) or (float, float, float, float,
float, float) on RDBMS, or as String
elsewhere.

oracle.spatial.geometry.JGeo
metry

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry)

com.vividsolutions.jts.geom.
Geometry

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.
GeometryCollection

   Requires datanucleus-geospatial
plugin.Dirty check limited to immutable
mode (must reassign field to owner if you
change it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.L
inearRing

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.L
ineString

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.
MultiLineString

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.
MultiPoint

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

25

Java Type EAGE
R?

Proxy
?

PK? Comments

com.vividsolutions.jts.geom.
MultiPolygon

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.P
oint

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

com.vividsolutions.jts.geom.P
olygon

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on Oracle(SDO_GEOMETRY),
MySQL(geometry), PostGIS(geometry).

org.postgis.Geometry    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.GeometryCollecti
on

   Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.LinearRing    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.LineString    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.MultiLineString    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

26

Java Type EAGE
R?

Proxy
?

PK? Comments

org.postgis.MultiPoint    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.MultiPolygon    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.Point    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.Polygon    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on MySQL(geometry),
PostGIS(geometry).

org.postgis.PGbox2d    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on PostGIS(geometry).

org.postgis.PGbox3d    Requires datanucleus-geospatial plugin.
Dirty check limited to immutable mode
(must reassign field to owner if you change
it). Only on PostGIS(geometry).

Some extra notes for implementation of JTS, JGeometry and PostGIS types support :-

• MySQL doesn’t support 3-dimensional geometries. Trying to persist them anyway results in
undefined behaviour, there may be an exception thrown or the z-ordinate might just get
stripped.

• Oracle supports additional data types like circles and curves that are not defined in the OGC SF
specification. Any attempt to read or persist one of those data types, if you’re not using Oracle,
will result in failure!

• PostGIS added support for curves in version 1.2.0, but at the moment the JDBC driver doesn’t
support them yet. Any attempt to read curves geometries will result in failure, for every
mapping scenario!

• Both PostGIS and Oracle have a system to add user data to specific points of a geometry. In
PostGIS these types are called measure types and the z-coordinate of every 2d-point can be used
to store arbitrary (numeric) data of double precision associated with that point. In Oracle this
user data is called LRS. datanucleus-geospatial tries to handle these types as gracefully as

27

possible. But the recommendation is to not use them, unless you have a mapping scenario that
is known to support them.

• PostGIS supports two additional types called box2d and box3d, that are not defined in OGC SF.
There are only mappings available for these types for PostGIS, any attempt to read or persist
one of those data types in another mapping scenario will result in failure!

datanucleus-geospatial has defined some metadata extensions that can be used to give additional
information about the geometry types in use. The position of these tags in the meta-data determines
their scope. If you use them inside a <field>-tag the values are only used for that field specifically, if
you use them inside the <package>-tag the values are in effect for all (geometry) fields of all classes
inside that package, etc.

28

<entity-mappings>
 <package>mydomain.samples.jtsgeometry</package>

 <entity class="mydomain.samples.jtsgeometry.SampleGeometry">
 <extension vendor-name="datanucleus" key="spatial-dimension" value="2"/>
 <extension vendor-name="datanucleus" key="spatial-srid" value="4326"/>
 <attributes>
 <id name="id"/>
 <basic name="name"/>
 <basic name="geom">
 <extension vendor-name="datanucleus" key="mapping" value="no-
userdata"/> [2]
 </basic>
 </attributes>
 </entity>

 <entity class="mydomain.samples.jtsgeometry.SampleGeometryCollectionM">
 <extension vendor-name="datanucleus" key="spatial-dimension" value="2"/>
 <extension vendor-name="datanucleus" key="spatial-srid" value="4326"/>
 <extension vendor-name="datanucleus" key="postgis-hasMeasure" value="true"/>
[3]
 <attributes>
 <id name="id"/>
 <basic name="name"/>
 <basic name="geom"/>
 </attributes>
 </entity>

 <entity class="mydomain.samples.jtsgeometry.SampleGeometryCollection3D">
 <extension vendor-name="datanucleus" key="spatial-dimension" value="3"/>
 <extension vendor-name="datanucleus" key="spatial-srid" value="-1"/>
 <attributes>
 <id name="id"/>
 <basic name="name"/>
 <basic name="geom"/>
 </attributes>
 </entity>
</entity-mappings>

• [1] - The srid & dimension values are used in various places. One of them is schema creation,
when using PostGIS, another is when you query the SpatialHelper.

• [2] - Every JTS geometry object can have a user data object attached to it. The default behaviour
is to serialize that object and store it in a separate column in the database. If for some reason
this isn’t desired, the mapping extension can be used with value "no-mapping" and
datanucleus-geospatial will ignore the user data objects.

• [3] - If you want to use measure types in PostGIS you have to define that using the postgis-
hasMeasure extension.

29

Other Types
Many other types are supported.

Java Type EAGE
R?

Proxy
?

PK? Comments

java.lang.Object    Either persisted serialised, or represents
multiple possible types

java.util.Currency    Persisted as String.

java.util.Locale    Persisted as String.

java.util.UUID    Persisted as String, or alternatively as native
uuid on PostgreSQL when specifying sql-
type="uuid".

java.util.Optional<type>;    Persisted as the type of the generic type that
optional represents.

java.awt.Color    Persisted as String or as
(Integer,Integer,Integer,Integer) storing
red,green,blue,alpha respectively.

java.awt.image.BufferedImag
e

   Persisted as serialised.

java.net.URI    Persisted as String.

java.net.URL    Persisted as String.

java.io.Serializable    Persisted as serialised.

java.io.File    Only for RDBMS, persisted to
LONGVARBINARY, and retrieved as
streamable so as not to adversely affect
memory utilisation, hence suitable for large
files.

Arrays
The vast majority of the secondary types can also be persisted as arrays of that type as well. Here
we list a few of the combinations definitely supported as arrays, but others likely will work fine

Java Type EAGE
R?

Proxy
?

PK? Comments

boolean[]    See the Arrays Guide

byte[]    See the Arrays Guide

char[]    See the Arrays Guide

double[]    See the Arrays Guide

30

mapping.html#serialised
mapping.html#objects
mapping.html#serialised
mapping.html#serialised
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays

Java Type EAGE
R?

Proxy
?

PK? Comments

float[]    See the Arrays Guide

int[]    See the Arrays Guide

long[]    See the Arrays Guide

short[]    See the Arrays Guide

java.lang.Boolean[]    See the Arrays Guide

java.lang.Byte[]    See the Arrays Guide

java.lang.Character[]    See the Arrays Guide

java.lang.Double[]    See the Arrays Guide

java.lang.Float[]    See the Arrays Guide

java.lang.Integer[]    See the Arrays Guide

java.lang.Long[]    See the Arrays Guide

java.lang.Short[]    See the Arrays Guide

java.lang.String[]    See the Arrays Guide

java.util.Date[]    See the Arrays Guide

java.math.BigDecimal[]    See the Arrays Guide

java.math.BigInteger[]    See the Arrays Guide

java.lang.Enum[]    See the Arrays Guide

java.util.Locale[]    See the Arrays Guide

Entity[]    See the Arrays Guide

Generic Type Variables
JPA does not explicitly require support for generic type variables. DataNucleus does support some
situations with generic type variables.

The first example that is largely supported is where you have an abstract base class with a generic
TypeVariable and then you specify the type in the (concrete) subclass(es).

31

mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays
mapping.html#arrays

@MappedSuperclass
public abstract class Base<T>
{
 private T id;
}

@Entity
public class Sub1 extends Base<Long>
{
 ...
}

@Entity
public class Sub2 extends Base<Integer>
{
 ...
}

Similarly you use TypeVariables to form relations, like this

@MappedSuperclass
public abstract class Ownable<T extends Serializable> implements Serializable
{
 @ManyToOne(optional = false)
 private T owner;
}

@Entity
public class Document extends Ownable<Person>
{
 ...
}

Clearly there are many combinations of where TypeVariables can be used and DataNucleus
supports a subset of these currently. Try it and see.

JPA Attribute Converters
JPA2.1 introduces an API for conversion of an attribute of an Entity to its datastore value. You can
define a "converter" that will convert to the datastore value and back from it, implementing this
interface.

32

public interface AttributeConverter<X,Y>
{
 public Y convertToDatabaseColumn (X attributeObject);

 public X convertToEntityAttribute (Y dbData);
}

so if we have a simple converter to allow us to persist fields of type URL in a String form in the
datastore, like this

public class URLStringConverter implements AttributeConverter<URL, String>
{
 public URL convertToEntityAttribute(String str)
 {
 if (str == null)
 {
 return null;
 }

 URL url = null;
 try
 {
 url = new java.net.URL(str.trim());
 }
 catch (MalformedURLException mue)
 {
 throw new IllegalStateException("Error converting the URL", mue);
 }
 return url;
 }

 public String convertToDatabaseColumn(URL url)
 {
 return url != null ? url.toString() : null;
 }
}

and now in our Entity class we mark any URL field as being converted using this converter

33

@Entity
public class MyClass
{
 @Id
 long id;

 @Basic
 @Convert(converter=URLStringConverter.class)
 URL url;

 ...
}

Note that in strict JPA 2.1 you have to mark all converters with the @Converter annotation. In
DataNucleus if you specify the converter class name in the @Convert then we know its a converter
so don’t really see why we need a user to annotate the converter too. We only require annotation as
@Converter if you want the converter to always be applied to fields of a particular type. i.e if you
want all URL fields to be persisted using the above converter (without needing to put @Convert on
each field of that type) then you would add the annotation

@Converter(autoApply=true)
public class URLStringConverter implements AttributeConverter<URL, String>
{
 ...
}

Note that if you have some java type with a @Converter registered to "autoApply", you can turn it
off on a field-by-field basis with

 @Convert(disableConversion=true)
 URL url;

A further use of AttributeConverter is where you want to apply type conversion to the key/value of
a Map field, or to the element of a Collection field. The Collection element case is simple, you just
specify the @Convert against the field and it will be applied to the element. If you want to apply
type conversion to a key/value of a map do this.

 @Convert(attributeName="key", converter=URLStringConverter.class)
 Map<URL, OtherEntity> myMap;

So we specify the attributeName to be key, and to use it on the value we would set it to value.

Types extending Collection/Map
Say you have your own type that extends Collection/Map. By default DataNucleus will not know

34

how to persist this. You could declare the type in your class as Collection/Map, but often you want to
refer to your own type. If you have your type and want to just persist it into a single column then
you should do as follows

public class MyCollectionType extends Collection
{
 ...
}

@Entity
public class MyClass
{
 MyCollectionType myField;

 ...
}

We now define a simple converter to allow us to persist fields of this type in String form in the
datastore, like this

public class MyCollectionTypeStringConverter implements AttributeConverter
<MyCollectionType, String>
{
 public MyCollectionType convertToEntityAttribute(String str)
 {
 if (str == null)
 {
 return null;
 }

 ...
 return myType;
 }

 public String convertToDatastoreColumn(MyCollectionType myType)
 {
 return myType != null ? myType.toString() : null;
 }
}

and now in our entity class we mark the myField as being converted using this converter

35

@Entity
public class MyClass
{
 @Convert(converter=MyCollectionTypeStringConverter.class)
 MyCollectionType myField;

 ...
}


If you want your extension of Collection/Map to be managed as a second class
type then you will need to provide a wrapper class for it. Please refer to the
java_type extension.

36

../extensions/extensions.html#java_type

Identity
All JPA-enabled persistable classes need to have an "identity" to be able to identify an object for
retrieval and relationships. In strict JPA there is only 1 type of identity - application identity, where
you have a field or field(s) of the entity that are used to define the identity. With DataNucleus JPA
we allow 2 additional types of identity. So your options are

• Application Identity : a field, or several fields of the persistable type are assigned as being (part
of) the primary key.

• Datastore Identity : a surrogate column is added to the persistence of the persistable type, and
objects of this type are identified by the class plus the value in this surrogate column.
DataNucleus Extension

• Nondurable Identity : the persistable type has no identity as such, so the only way to lookup
objects of this type would be via query for values of specific fields. This is useful for storing
things like log messages etc. DataNucleus Extension

A further complication is where you use application identity but one of the fields forming the
primary key is a relation field. This is known as Derived Identity.



When you have an inheritance hierarchy, you should specify the identity
type in the base instantiable class for the inheritance tree. This is then used
for all persistent classes in the tree. This means that you can have
@MappedSuperclass without any identity fields/properties as superclass, and
then the base instantiable class is the first persistable class which has the identity
field(s).

Application Identity

 Applicable to all datastores.

With application identity you are taking control of the specification of id’s to DataNucleus.
Application identity can require a primary key class (when you have multiple identity fields), and
each persistent capable class may define a different class for its primary key, and different
persistent capable classes can use the same primary key class, as appropriate. With application
identity the field(s) of the primary key will be present as field(s) of the class itself. To specify that a
class is to use application identity, you add the following to the MetaData for the class.

<entity class="org.mydomain.MyClass">
 <attributes>
 <id name="myPrimaryKeyField"/>
 </attributes>
</entity>

or, if we are using annotations

37

#application_identity
#datastore_identity
#nondurable_identity
#derived_identity

@Entity
public class MyClass
{
 @Id
 private long myPrimaryKeyField;
}

When we have multiple identity fields we also require an id-class, using XML

<entity class="org.mydomain.MyClass">
 <id-class class="org.mydomain.MyIdClass"/>
 <attributes>
 <id name="myPrimaryKeyField1"/>
 <id name="myPrimaryKeyField2"/>
 </attributes>
</entity>

or, if we are using annotations

@Entity
@IdClass(class=MyIdClass.class)
public class MyClass
{
 @Id
 private long myPrimaryKeyField1;

 @Id
 private long myPrimaryKeyField2;

}

See also:-

• MetaData reference for <id> element

• Annotations reference for @Id

Application Identity : Generating identities

By choosing application identity you are controlling the process of identity generation for this
class. This does not mean that you have a lot of work to do for this. JPA1 defines many ways of
generating these identities and DataNucleus supports all of these and provides some more of its
own besides.

See also:-

• Identity Generation Guide - strategies for generating ids

38

metadata_xml.html#id
annotations.html#Id
#value_generation

Application Identity : Changing Identities

JPA doesn’t define what happens if you change the identity (an identity field) of an object once
persistent. DataNucleus doesn’t currently support changes to identities.

Application Identity : Accessing objects by Identity

You access an object from its object class name and identity "value" as follows

MyClass myObj = em.find(MyClass.class, mykey);

If you have defined your own "IdClass" then the mykey is the toString() form of the identity of your
PK class.

Primary Key

When you choose application identity you are defining which fields of the class are part of the
primary key, and you are taking control of the specification of id’s to DataNucleus. Application
identity requires a primary key (PK) class, and each persistent capable class may define a different
class for its primary key, and different persistent capable classes can use the same primary key
class, as appropriate. If you have only a single primary-key field then there are builtin PK classes so
you can forget this section. Where you have more than 1 primary key field, you would define the
PK class like this

<entity class="MyClass">
 <id-class class="MyIdClass"/>
 ...
</entity>

or using annotations

@Entity
@IdClass(class=MyIdClass.class)
public class MyClass
{
 ...
}

You now need to define the PK class to use. This is simplified for you because if you have only one
PK field then you dont need to define a PK class and you only define it when you have a
composite PK.

An important thing to note is that the PK can only be made up of fields of the following Java types

• Primitives : boolean, byte, char, int, long, short

• java.lang : Boolean, Byte, Character, Integer, Long, Short, String, Enum, StringBuffer

39

• java.math : BigInteger

• java.sql : Date, Time, Timestamp

• java.util : Date, Currency, Locale, TimeZone, UUID

• java.net : URI, URL

• persistable

Note that the types in bold are JPA standard types. Any others are DataNucleus extensions and, as
always, check the specific datastore docs to see what is supported for your datastore.

Single PrimaryKey field

The simplest way of using application identity is where you have a single PK field, and in this case
you use an inbuilt primary key class that DataNucleus provides, so you don’t need to specify the
objectid-class. Let’s take an example

public class MyClass
{
 long id;
 ...
}

<entity class="MyClass">
 <attributes>
 <id name="id"/>
 ...
 </attributes>
</entity>

or using annotations

@Entity
public class MyClass
{
 @Id
 long id;
 ...
}

So we didnt specify the JPA "id-class". You will, of course, have to give the field a value before
persisting the object, either by setting it yourself, or by using a value-strategy on that field.

PrimaryKey : Rules for User-Defined classes

If you wish to use application identity and don’t want to use the "SingleFieldIdentity" builtin PK
classes then you must define a Primary Key class of your own. You can’t use classes like

40

../datastores/datastores.html
#value_generation

java.lang.String, or java.lang.Long directly. You must follow these rules when defining your primary
key class.

• the Primary Key class must be public

• the Primary Key class must implement Serializable

• the Primary Key class must have a public no-arg constructor, which might be the default
constructor

• The PrimaryKey class can have a constructor taking the primary key fields, or can use Java bean
setters/getters

• the field types of all non-static fields in the Primary Key class must be serializable, and are
recommended to be primitive, String, Date, or Number types

• all serializable non-static fields in the Primary Key class can be public, but
package/protected/private should also be fine

• the names of the non-static fields in the Primary Key class must include the names of the
primary key fields in the Entity, and the types of the common fields must be identical

• the equals() and hashCode() methods of the Primary Key class must use the value(s) of all the
fields corresponding to the primary key fields in the JPA entity

• if the Primary Key class is an inner class, it must be static

• the Primary Key class must override the toString() method defined in Object, and return a String
that can be used as the parameter of a constructor

• the Primary Key class must provide a String constructor that returns an instance that compares
equal to an instance that returned that String by the toString() method.

• the Primary Key class must be only used within a single inheritance tree.

Please note that if one of the fields that comprises the primary key is in itself an entity then you
have Derived Identity and should consult the documentation for that feature which contains its
own example.



Since there are many possible combinations of primary-key fields it is impossible
for DataNucleus to provide a series of builtin composite primary key classes.
However the DataNucleus enhancer provides a mechanism for auto-generating a
primary-key class for a persistable class. It follows the rules listed above and
should work for all cases. Obviously if you want to tailor the output of things like
the PK toString() method then you ought to define your own. The enhancer
generation of primary-key class is only enabled if you don’t define your own
class.

PrimaryKey Example - Multiple Field

Here’s an example of a composite (multiple field) primary key class

@Entity

41

enhancer.html

@IdClass(ComposedIdKey.class)
public class MyClass
{
 @Id
 String field1;

 @Id
 String field2;
 ...
}

public class ComposedIdKey implements Serializable
{
 public String field1;
 public String field2;

 /**
 * Default constructor.
 */
 public ComposedIdKey ()
 {
 }

 /**
 * Constructor accepting same input as generated by toString().
 */
 public ComposedIdKey(String value)
 {
 StringTokenizer token = new StringTokenizer (value, "::");
 //field1
 this.field1 = token.nextToken ();
 //field2
 this.field2 = token.nextToken ();
 }

 public boolean equals(Object obj)
 {
 if (obj == this)
 {
 return true;
 }
 if (!(obj instanceof ComposedIdKey))
 {
 return false;
 }
 ComposedIdKey c = (ComposedIdKey)obj;

 return field1.equals(c.field1) && field2.equals(c.field2);
 }

 public int hashCode ()

42

 {
 return this.field1.hashCode() ^ this.field2.hashCode();
 }

 public String toString ()
 {
 // Give output expected by String constructor
 return "" + this.field1 + "::" + this.field2;
 }
}

Datastore Identity


Applicable to RDBMS, ODF, Excel, OOXML, XML, HBase, Cassandra, Neo4j,
MongoDB, JSON

While JPA defines support for application identity only, DataNucleus also provides support for
datastore identity. With datastore identity you are leaving the assignment of id’s to DataNucleus
and your class will not have a field for this identity - it will be added to the datastore representation
by DataNucleus. It is, to all extents and purposes a surrogate key that will have its own column in
the datastore. To specify that a class is to use datastore identity with JPA, you define the metadata
as follows

<entity class="org.mydomain.MyClass">
 <datastore-id/>
 ...
</entity>

or using annotations, for example

@Entity
@org.datanucleus.api.jpa.annotations.DatastoreIdentity
public class MyClass
{
 ...
}

Please note that since the JPA XML metadata is poorly designed it is not possible to specify datastore
identity using XML, you have to use the annotations.

Datastore Identity : Generating identities

By choosing datastore identity you are handing the process of identity generation to the
DataNucleus. This does not mean that you haven’t got any control over how it does this. JPA defines

43

many ways of generating these identities and DataNucleus supports all of these and provides some
more of its own besides.

Defining which one to use is a simple matter of adding a MetaData element to your classes
definition, like this

@Entity
@org.datanucleus.api.jpa.annotations.DatastoreIdentity(generationType=GenerationType.T
ABLE)
public class MyClass
{
 ...
}

See also:- * Identity Generation Guide - strategies for generating ids * Annotations reference for
@DatastoreIdentity

Datastore Identity : Accessing the Identity

When using datastore identity, the class has no associated field so you can’t just access a field of
the class to see its identity - if you need a field to be able to access the identity then you should be
using application identity. There are, however, ways to get the identity for the datastore identity
case, if you have the object.

import org.datanucleus.api.jpa.NucleusJPAHelper;

Object idKey = NucleusJPAHelper.getDatastoreIdForEntity(obj);

From this you can use the "find" method to retrieve the object

MyClass myObj = em.find(MyClass.class, idKey);

Nondurable Identity

 Applicable to RDBMS, ODF, Excel, OOXML, HBase, Neo4j, MongoDB

JPA requires that all objects have an identity. DataNucleus provides a vendor extension that allows
objects of a class to not have a unique identity in the datastore. This type of identity is typically for
log files, history files etc where you aren’t going to access the object by key, but instead by a
different parameter. In the datastore the table will typically not have a primary key. To specify that
a class is to use nondurable identity with DataNucleus you would add the following to the
MetaData for the class.

44

#value_generation
annotations.html#DatastoreIdentity
annotations.html#DatastoreIdentity

<entity class="org.mydomain.MyClass">
 <nondurable-id/>
 ...
</entity>

or using annotations, for example

@Entity
@org.datanucleus.api.jpa.annotations.NonDurableId
public class MyClass
{
 ...
}

What this means for something like RDBMS is that the table of the class will not have a primary-key.

Derived Identity Relationships
An derived identity relationship is a relationship between two objects of two classes in which the
child object must coexist with the parent object and where the primary key of the child includes the
Entity object of the parent. So effectively the key aspect of this type of relationship is that the
primary key of one of the classes includes a Entity field (hence why is is referred to as Derived
Identity). This type of relation is available in the following forms

• 1-1 unidirectional

• 1-N collection bidirectional using ForeignKey

• 1-N map bidirectional using ForeignKey (key stored in value)



In pure JPA, if the entity that is part of the id of the derived entity has a single
long field then you can put a long field in the identity class of the derived entity.
In DataNucleus you cannot do this currently, and should define the @IdClass of
the entity being contained and use that type in the identity class of the derived
entity.


The persistable class that is contained cannot be using datastore identity, and
must be using application identity with an objectid-class


When using derived identity, it is best practice to define an @IdClass for any
entity that is part of the primary key, and not rely on the built-in identity types.

1-1 Relationship

Lets take the same classes as we have in the 1-1 Relationships. In the 1-1 relationships guide we
note that in the datastore representation of the User and Account the ACCOUNT table has a
primary key as well as a foreign-key to USER. In our example here we want to just have a primary

45

#one_one_relations

key that is also a foreign-key to USER. To do this we need to modify the classes slightly and add
primary-key fields and use "application-identity".

public class User
{
 long id;

 ...
}

public class Account
{
 User user;

 ...
}

In addition we need to define primary key classes for our User and Account classes

@Entity
public class User
{
 @Id
 long id;

 ... (remainder of User class)

 /**
 * Inner class representing Primary Key
 */
 public static class PK implements Serializable
 {
 public long id;

 public PK()
 {
 }

 public PK(String s)
 {
 this.id = Long.valueOf(s).longValue();
 }

 public String toString()
 {
 return "" + id;
 }

 public int hashCode()

46

 {
 return (int)id;
 }

 public boolean equals(Object other)
 {
 if (other != null && (other instanceof PK))
 {
 PK otherPK = (PK)other;
 return otherPK.id == this.id;
 }
 return false;
 }
 }
}

@Entity
public class Account
{
 @Id
 @OneToOne
 User user;

 ... (remainder of Account class)

 /**
 * Inner class representing Primary Key
 */
 public static class PK implements Serializable
 {
 public User.PK user; // Use same name as the real field above

 public PK()
 {
 }

 public PK(String s)
 {
 StringTokenizer token = new StringTokenizer(s,"::");

 this.user = new User.PK(token.nextToken());
 }

 public String toString()
 {
 return "" + this.user.toString();
 }

 public int hashCode()
 {
 return user.hashCode();

47

 }

 public boolean equals(Object other)
 {
 if (other != null && (other instanceof PK))
 {
 PK otherPK = (PK)other;
 return this.user.equals(otherPK.user);
 }
 return false;
 }
 }
}

To achieve what we want with the datastore schema we define the MetaData like this

<entity-mappings>
 <entity class="mydomain.User">
 <table name="USER"/>
 <id-class class="mydomain.User.PK"/>
 <attributes>
 <id name="id">
 <column name="USER_ID"/>
 </id>
 <basic name="login">
 <column name="LOGIN" length="20"/>
 </basic>
 </attributes>
 </entity>

 <entity class="mydomain.Account">
 <table name="ACCOUNT"/>
 <id-class class="mydomain.Account.PK"/>
 <attributes>
 <id name="user">
 <column name="USER_ID"/>
 </id>
 <basic name="firstName">
 <column name="FIRSTNAME" length="50"/>
 </basic>
 <basic name="secondName">
 <column name="LASTNAME" length="50"/>
 </basic>
 <one-to-one name="user"/>
 </attributes>
 </entity>
</entity-mappings>

So now we have the following datastore schema

48

Things to note:-

• In the child Primary Key class, you must have a field with the same name as the relationship in
the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

• See also the general instructions for Primary Key classes

• You can only have one "Account" object linked to a particular "User" object since the FK to the
"User" is now the primary key of "Account". To remove this restriction you could also add a
"long id" to "Account" and make the "Account.PK" a composite primary-key

1-N Collection Relationship

Lets take the same classes as we have in the 1-N Relationships (FK). In the 1-N relationships guide
we note that in the datastore representation of the Account and Address classes the ADDRESS
table has a primary key as well as a foreign-key to ACCOUNT. In our example here we want to have
the primary-key to ACCOUNT to include the foreign-key. To do this we need to modify the classes
slightly, adding primary-key fields to both classes, and use "application-identity" for both.

public class Account
{
 long id;

 Set<Address> addresses;

 ...
}

public class Address
{
 long id;

 Account account;

 ...
}

In addition we need to define primary key classes for our Account and Address classes

@Entity
public class Account
{
 @Id

49

#one_many_fk_bi

 long id;

 @OneToMany
 Set<Address> addresses = new HashSet<>();

 ... (remainder of Account class)

 /**
 * Inner class representing Primary Key
 */
 public static class PK implements Serializable
 {
 public long id;

 public PK()
 {
 }

 public PK(String s)
 {
 this.id = Long.valueOf(s).longValue();
 }

 public String toString()
 {
 return "" + id;
 }

 public int hashCode()
 {
 return (int)id;
 }

 public boolean equals(Object other)
 {
 if (other != null && (other instanceof PK))
 {
 PK otherPK = (PK)other;
 return otherPK.id == this.id;
 }
 return false;
 }
 }
}

@Entity
public class Address
{
 @Id
 long id;

50

 @Id
 @ManyToOne
 Account account;

 .. (remainder of Address class)

 /**
 * Inner class representing Primary Key
 */
 public static class PK implements Serializable
 {
 public long id; // Same name as real field above
 public Account.PK account; // Same name as the real field above

 public PK()
 {
 }

 public PK(String s)
 {
 StringTokenizer token = new StringTokenizer(s,"::");
 this.id = Long.valueOf(token.nextToken()).longValue();
 this.account = new Account.PK(token.nextToken());
 }

 public String toString()
 {
 return "" + id + "::" + this.account.toString();
 }

 public int hashCode()
 {
 return (int)id ^ account.hashCode();
 }

 public boolean equals(Object other)
 {
 if (other != null && (other instanceof PK))
 {
 PK otherPK = (PK)other;
 return otherPK.id == this.id && this.account.equals(otherPK.account);
 }
 return false;
 }
 }
}

To achieve what we want with the datastore schema we define the MetaData like this

51

<entity-mappings>
 <entity class="mydomain.Account">
 <table name="ACCOUNT"/>
 <id-class class="mydomain.Account.PK"/>
 <attributes>
 <id name="id">
 <column name="ACCOUNT_ID"/>
 </id>
 <basic name="firstName">
 <column name="FIRSTNAME" length="50"/>
 </basic>
 <basic name="secondName">
 <column name="LASTNAME" length="50"/>
 </basic>
 <one-to-many name="addresses" mapped-by="account"/>
 </attributes>
 </entity>

 <entity class="mydomain.Address">
 <table name="ADDRESS"/>
 <id-class class="mydomain.Address.PK"/>
 <attributes>
 <id name="id">
 <column name="ID"/>
 </id>
 <id name="account">
 <column name="ACCOUNT_ID"/>
 </id>
 <basic name="city">
 <column name="CITY"/>
 </basic>
 <basic name="street">
 <column name="STREET"/>
 </basic>
 <many-to-one name="account"/>
 </attributes>
 </entity>
</entity-mappings>

So now we have the following datastore schema

Things to note :-

• In the child Primary Key class, you must have a field with the same name as the relationship in

52

the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

• See also the general instructions for Primary Key classes

• If we had omitted the "id" field from "Address" it would have only been possible to have one
"Address" in the "Account" "addresses" collection due to PK constraints. For that reason we have
the "id" field too.

1-N Map Relationship

Lets take the same classes as we have in the 1-N Relationships FK. In this guide we note that in the
datastore representation of the Account and Address classes the ADDRESS table has a primary key
as well as a foreign-key to ACCOUNT. In our example here we want to have the primary-key to
ACCOUNT to include the foreign-key. To do this we need to modify the classes slightly, adding
primary-key fields to both classes, and use "application-identity" for both.

public class Account
{
 long id;

 Map<String, Address> addresses;

 ...
}

public class Address
{
 long id;

 String alias;

 Account account;

 ...
}

In addition we need to define primary key classes for our Account and Address classes

@Entity
public class Account
{
 @Id
 long id;

 @OneToMany
 Map<String, Address> addresses;

 ... (remainder of Account class)

53

#one_many_map_fk_bi_key

 /**
 * Inner class representing Primary Key
 */
 public static class PK implements Serializable
 {
 public long id;

 public PK()
 {
 }

 public PK(String s)
 {
 this.id = Long.valueOf(s).longValue();
 }

 public String toString()
 {
 return "" + id;
 }

 public int hashCode()
 {
 return (int)id;
 }

 public boolean equals(Object other)
 {
 if (other != null && (other instanceof PK))
 {
 PK otherPK = (PK)other;
 return otherPK.id == this.id;
 }
 return false;
 }
 }
}

@Entity
public class Address
{
 @Id
 String alias;

 @Id
 @ManyToOne
 Account account;

 .. (remainder of Address class)

 /**

54

 * Inner class representing Primary Key
 */
 public static class PK implements Serializable
 {
 public String alias; // Same name as real field above
 public Account.PK account; // Same name as the real field above

 public PK()
 {
 }

 public PK(String s)
 {
 StringTokenizer token = new StringTokenizer(s,"::");
 this.alias = Long.valueOf(token.nextToken()).longValue();
 this.account = new Account.PK(token.nextToken());
 }

 public String toString()
 {
 return alias + "::" + this.account.toString();
 }

 public int hashCode()
 {
 return alias.hashCode() ^ account.hashCode();
 }

 public boolean equals(Object other)
 {
 if (other != null && (other instanceof PK))
 {
 PK otherPK = (PK)other;
 return otherPK.alias.equals(this.alias) && this.account.equals(
otherPK.account);
 }
 return false;
 }
 }
}

To achieve what we want with the datastore schema we define the MetaData like this

55

<entity-mappings>
 <entity class="mydomain.Account">
 <table name="ACCOUNT"/>
 <id-class class="mydomain.Account.PK"/>
 <attributes>
 <id name="id">
 <column name="ACCOUNT_ID"/>
 </id>
 <basic name="firstName">
 <column name="FIRSTNAME" length="50"/>
 </basic>
 <basic name="secondName">
 <column name="LASTNAME" length="50"/>
 </basic>
 <one-to-many name="addresses" mapped-by="account">
 <map-key name="alias"/>
 </one-to-many>
 </attributes>
 </entity>

 <entity class="mydomain.Address">
 <table name="ADDRESS"/>
 <id-class class="mydomain.Address.PK"/>
 <attributes>
 <id name="account">
 <column name="ACCOUNT_ID"/>
 </id>
 <id name="alias">
 <column name="KEY"/>
 </id>
 <basic name="city">
 <column name="CITY"/>
 </basic>
 <basic name="street">
 <column name="STREET"/>
 </basic>
 <many-to-one name="account"/>
 </attributes>
 </entity>
</entity-mappings>

So now we have the following datastore schema

Things to note :-

56

• In the child Primary Key class, you must have a field with the same name as the relationship in
the child class, and the field in the child Primary Key class must be the same type as the Primary
Key class of the parent

• See also the general instructions for Primary Key classes

• If we had omitted the "alias" field from "Address" it would have only been possible to have one
"Address" in the "Account" "addresses" collection due to PK constraints. For that reason we have
the "alias" field too as part of the PK.

57

Versioning
JPA allows objects of classes to be versioned. The version is typically used as a way of detecting if
the object has been updated by another thread or EntityManager since retrieval using the current
EntityManager - for use by Optimistic Transactions.

Version Field/Property
The standard JPA mechanism for versioning of objects is to mark a field of the class to store the
version. The field must be Integer/Long based. With JPA you can specify the details of this version
field as follows

@Entity
public class User
{
 ...

 @Version
 int version;

 ...
}

or using XML metadata

<entity name="mydomain.User">
 <attributes>
 ...
 <version name="version"/>
 ...
 </attributes>
</entity>

The specification above will use the "version" field for storing the version of the object. DataNucleus
will use a "version-number" strategy for populating the value.

Surrogate Version for Class

While the above mechanism should always be used for portability, DataNucleus also supports a
surrogate version for objects of a class. With this you don’t have a particular field that stores the
version and instead DataNucleus persists the version in the datastore with the field values in its
own "column". You do this as follows.

58

persistence.html#locking_optimistic

import org.datanucleus.api.jpa.annotations.SurrogateVersion;

@Entity
@SurrogateVersion
public class User
{
 ...
}

or using XML metadata

<entity name="mydomain.User">
 <surrogate-version column="version"/>
 ...
</entity>

To access the "surrogate" version, you can make use of the following method

import org.datanucleus.api.jpa.NucleusJPAHelper;

Object version = NucleusJPAHelper.getSurrogateVersionForEntity(obj);

59

Value Generation
Fields of a class can either have the values set by you the user, or you can set DataNucleus to
generate them for you. This is of particular importance with identity fields where you want unique
identities. You can use this value generation process with the identity field(s) in JPA. There are
many different "strategies" for generating values, as defined by the JPA specification. Some
strategies are specific to a particular datastore, and some are generic. You should choose the
strategy that best suits your target datastore. The available strategies are :-

• AUTO - this is the default and allows DataNucleus to choose the most suitable for the datastore

• SEQUENCE - this uses a datastore sequence (if supported by the datastore)

• IDENTITY - these use autoincrement/identity/serial features in the datastore (if supported by the
datastore)

• TABLE - this is datastore neutral and increments a sequence value using a table.

• Custom generators - these are beyond the scope of the JPA spec but provided by DataNucleus

See also:-

• JPA MetaData reference for <generated-value>

• JPA Annotation reference for @GeneratedValue


the JPA spec only requires the ability to generate values for identity fields.
DataNucleus allows you to do it for any field. Please bear this in mind when
considering portability


By defining a value-strategy for a field then it will, by default, always generate a
value for that field on persist. If the field can store nulls and you only want it to
generate the value at persist when it is null (i.e you haven’t assigned a value
yourself) then you can add the extension "strategy-when-notnull" as false

ValueGeneration Strategy AUTO
With this strategy DataNucleus will choose the most appropriate strategy for the datastore being
used. If you define the field as String-based then it will choose uuid-hex. Otherwise the field is
numeric in which case it chooses identity if supported, otherwise sequence if supported, otherwise
table if supported otherwise throws an exception.

On RDBMS you can get the behaviour used up until DN v3.0 by specifying the persistence property
datanucleus.rdbms.useLegacyNativeValueStrategy as true. For a class using application
identity you need to set the value-strategy attribute on the primary key field. You can configure the
Meta-Data for the class something like this

60

#valuegen_native
#valuegen_sequence
#valuegen_identity
#valuegen_increment
#valuegen_custom
metadata_xml.html#generated-value
annotations.html#GeneratedValue
../jdo/mapping.html#valuegen_uuidhex
#valuegen_identity
#valuegen_sequence
#valuegen_increment

<entity class="MyClass">
 <attributes>
 <id name="myId">
 <generated-value strategy="AUTO"/>
 </id>
 </attributes>
</entity>

or using annotations

@Entity
public class MyClass
{
 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private long myId;
 ...
}

To configure a class to use this generation using datastore identity you need to look at the
@DatastoreId extension annotation or the XML <datastore-id> tag

ValueGeneration Strategy SEQUENCE


Applicable to RDBMS (Oracle, PostgreSQL, SAPDB, DB2, Firebird, HSQLDB, H2,
Derby, SQLServer, NuoDB)

A sequence is a user-defined database function that generates a sequence of unique numeric ids.
The unique identifier value returned from the database is translated to a java type: java.lang.Long
To configure a class to use this strategy using application identity you would add the following to
the class' Meta-Data

<sequence-generator name="SEQ1" sequence-name="MY_SEQ" initial-value="5" allocation-
size="10"/>
<entity class="MyClass">
 <attributes>
 <id name="myId">
 <generated-value strategy="SEQUENCE" generator="SEQ1"/>
 </id>
 </attributes>
</entity>

or using annotations

61

@Entity
@SequenceGenerator(name="SEQ1", sequenceName="MY_SEQ", initialValue=5, allocationSize
=10)
public class MyClass
{
 @Id
 @GeneratedValue(strategy=GenerationType.SEQUENCE, generator="SEQ1")
 private long myId;
 ...
}

If the sequence does not yet exist in the database at the time DataNucleus needs a new unique
identifier, a new sequence is created in the database based on the JPA Meta-Data configuration.

Extension properties for configuring sequences can be set in the JPA Meta-Data (via @Extension or
<extension>), see the available properties below. Unsupported properties by a database are silently
ignored by DataNucleus.

Property Description Required

key-database-cache-size specifies how many sequence numbers are to be
preallocated and stored in memory for faster
access. This is an optimization feature provided
by the database

No

To configure a class to use this generation using datastore identity you need to look at the
@DatastoreId extension annotation or the XML <datastore-id> tag.

This value generator will generate values unique across different JVMs

Values generated using this generator are available in @PrePersist.

See also:-

• JPA MetaData reference for <sequence-generator>

• JPA Annotation reference for @SequenceGenerator

ValueGeneration Strategy IDENTITY


Applicable to RDBMS (IDENTITY (DB2, SQLServer, Sybase, HSQLDB, H2, Derby,
NuoDB), AUTOINCREMENT (MySQL, MariaDB) SERIAL (PostgreSQL)), MongoDB
(String), Neo4j (long)

Auto-increment/identity/serial are primary key columns that are populated when a row is inserted
in the table. These use the databases own keywords on table creation and so rely on having the
table structure either created by DataNucleus or having the column with the necessary keyword.

62

metadata_xml.html#sequence-generator
annotations.html#SequenceGenerator


This generation strategy should only be used if there is a single "root" table for
the inheritance tree. If you have more than 1 root table (e.g using subclass-table
inheritance) then you should choose a different generation strategy

For a class using application identity you need to set the value-strategy attribute on the primary
key field. You can configure the Meta-Data for the class something like this

<entity class="MyClass">
 <attributes>
 <id name="myId">
 <generated-value strategy="IDENTITY"/>
 </id>
 </attributes>
</entity>

or using annotations

@Entity
public class MyClass
{
 @Id
 @GeneratedValue(strategy=GenerationType.IDENTITY)
 private long myId;
 ...
}

Please be aware that if you have an inheritance tree with the base class defined as using "identity"
then the column definition for the PK of the base table will be defined as "AUTO_INCREMENT" or
"IDENTITY" or "SERIAL" (dependent on the RDBMS) and all subtables will NOT have this identifier
added to their PK column definitions. This is because the identities are assigned in the base table
(since all objects will have an entry in the base table).

Please note that if using optimistic transactions, this strategy will mean that the value is only
set when the object is actually persisted (i.e at flush() or commit())

To configure a class to use this generation using datastore identity you need to look at the
@DatastoreId extension annotation or the XML <datastore-id> tag

This value generator will generate values unique across different JVMs.

Values generated using this generator are NOT available in @PrePersist, being generated at persist
only.

ValueGeneration Strategy TABLE

 Applies to all datastores

63

This method is database neutral and uses a sequence table that holds an incrementing sequence
value. The unique identifier value returned from the database is translated to a java type:
java.lang.Long. This method require a sequence table in the database and creates one if doesn’t
exist.

To configure an application identity class to use this generation method you simply add this to the
class' Meta-Data. If your class is in an inheritance tree you should define this for the base class only.

<entity class="MyClass">
 <table-generator name="myGenerator" table="TABLE_VALUE_GEN" pkColumnName="GEN_KEY"
valueColumnName="GEN_VALUE" pkColumnValue="MyClass"/>
 <attributes>
 <id name="myId">
 <generated-value strategy="TABLE"/>
 </id>
 </attributes>
</entity>

or using annotations

@Entity
@TableGenerator(name="myGenerator", table="TABLE_VALUE_GEN", pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE", pkColumnValue="MyClass")
public class MyClass
{
 @Id
 @GeneratedValue(strategy=GenerationType.TABLE, generator="myGenerator")
 private long myId;
 ...
}

This will create a table in the datastore called "TABLE_VALUE_GEN" with columns "GEN_KEY",
"GEN_VALUE" with the key for the row for this class being "MyClass".

Extension properties for configuring sequences can be set in the JPA Meta-Data (via @Extension or
<extension>), see the available properties below. Unsupported properties by a database are silently
ignored by DataNucleus.

Property Description Required

sequence-table-basis Whether to define uniqueness on the base class
name or the base table name. Since there is no
"base table name" when the root class has
"subclass-table" this should be set to "class"
when the root class has "subclass-table"
inheritance

No. Defaults to class,
but the other option is
table

64

Property Description Required

table-name Name of the table whose column we are
generating the value for (used when we have no
previous sequence value and want a start point).

No.

column-name Name of the column we are generating the value
for (used when we have no previous sequence
value and want a start point).

No.

To configure a class to use this generation using datastore identity you need to look at the
@DatastoreId extension annotation or the XML <datastore-id> tag

This value generator will generate values unique across different JVMs

Values generated using this generator are available in @PrePersist.

See also:-

• JPA MetaData reference for <table-generator>

• JPA Annotation reference for @TableGenerator

ValueGeneration Strategy "Custom"

JPA only provides a very restricted set of value generators. DataNucleus provides various others
internally. To access these you need to use a custom annotation as follows

<entity class="MyClass">
 <attributes>
 <id name="myId">
 <generated-value strategy="uuid"/>
 </id>
 </attributes>
</entity>

or using annotations

@Entity
public class MyClass
{
 @Id
 @ValueGenerator(strategy="uuid")
 private String myId;
 ...
}

65

metadata_xml.html#table-generator
annotations.html#TableGenerator

This will generate java UUID Strings in the "myId" field. You can also set the "strategy" to
"timestamp", "auid", "uuid-string", "uuid-hex", "uuid-object" and "timestamp_value".

Values generated using these generators are available in @PrePersist.

66

../jdo/mapping.html#valuegen_timestamp
../jdo/mapping.html#valuegen_auid
../jdo/mapping.html#valuegen_uuidstring
../jdo/mapping.html#valuegen_uuid_hex
../jdo/mapping.html#valuegen_uuid_object
../jdo/mapping.html#valuegen_timestamp_value

1-1 Relations
You have a 1-to-1 relationship when an object of a class has an associated object of another class
(only one associated object). It could also be between an object of a class and another object of the
same class (obviously). You can create the relationship in 2 ways depending on whether the 2
classes know about each other (bidirectional), or whether only one of the classes knows about the
other class (unidirectional). These are described below.


For RDBMS a 1-1 relation is stored as a foreign-key column(s). For non-RDBMS it
is stored as a String "column" storing the 'id' (possibly with the class-name
included in the string) of the related object.


DataNucleus does not support a 1-1 relation using a join table. It is not a use-case
that is very common. You could look at N-1 unidirectional using join table if you
really want to do this

Unidirectional
For this case you could have 2 classes, User and Account, as below.

public class Account
{
 User user;
}

public class User
{
 ...
}

so the Account class knows about the User class, but not vice-versa. If you define the annotations
for these classes as follows

67

@Entity
public class Account
{
 ...

 @OneToOne
 @JoinColumn(name="USER_ID")
 User user;
}

@Entity
public class User
{
 ...
}

or using XML metadata

<entity-mappings>
 <entity class="User">
 <table name="USER"/>
 <attributes>
 <id name="id">
 <column name="USER_ID"/>
 </id>
 ...
 </entity>

 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 <id name="id">
 <column name="ACCOUNT_ID"/>
 </id>
 ...
 <one-to-one name="user">
 <join-column name="USER_ID"/>
 </one-to-one>
 </attributes>
 </entity>
</entity-mappings>

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT and a column USER_ID), as shown below.

68


Account has the object reference to User (and so is the "owner" of the relation)
and so its table holds the foreign-key


If you call EntityManager.remove() on the end of a 1-1 unidirectional relation
without the relation and that object is related to another object, an exception will
typically be thrown (assuming the datastore supports foreign keys). To delete this
record you should remove the other objects association first.

Bidirectional
For this case you could have 2 classes, User and Account again, but this time as below. Here the
Account class knows about the User class, and also vice-versa.

public class Account
{
 User user;

 ...
}

public class User
{
 Account account;

 ...
}

We create the 1-1 relationship with a single foreign-key. To do this you define the annotations as

69

@Entity
public class Account
{
 ...

 @OneToOne
 @JoinColumn(name="USER_ID")
 User user;
}

@Entity
public class User
{
 ...

 @OneToOne(mappedBy="user")
 Account account;

 ...
}

or using XML metadata

<entity-mappings>
 <entity class="User">
 <table name="USER"/>
 <attributes>
 <id name="id">
 <column name="USER_ID"/>
 </id>
 ...
 <one-to-one name="account" mapped-by="user"/>
 </attributes>
 </entity>

 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 <id name="id">
 <column name="ACCOUNT_ID"/>
 </id>
 ...
 <one-to-one name="user">
 <join-column name="USER_ID"/>
 </one-to-one>
 </attributes>
 </entity>
</entity-mappings>

70

The difference is that we added mapped-by to the field of User making it bidirectional (and putting
the FK at the other side for RDBMS)

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT). For RDBMS it includes a USER_ID column in the ACCOUNT table, like this

For other types of datastore it will have a USER_ID column in the ACCOUNT table and a ACCOUNT
column in the USER table.


When forming the relation please make sure that you set the relation at BOTH
sides since DataNucleus would have no way of knowing which end is correct if
you only set one end.

71

1-N Relations
You have a 1-N (one to many) when you have one object of a class that has a Collection of objects of
another class.

Please note that Collections allow duplicates, and so the persistence process reflects this with
the choice of primary keys. There are two principal ways in which you can represent this in a
datastore : Join Table (where a join table is used to provide the relationship mapping between the
objects), and Foreign-Key (where a foreign key is placed in the table of the object contained in the
Collection.

The various possible relationships are described below.

• Collection<Entity> - Unidirectional using join table

• Collection<Entity> - Unidirectional using foreign-key

• Collection<Entity> - Bidirectional using join table

• Collection<Entity> - Bidirectional using foreign-key

• List<Entity>

• Collection<Simple> using join table

• Collection<Simple> using AttributeConverter into single column

• Collection<Entity> using shared join table (DataNucleus Extension)

• Collection<Entity> using shared foreign key (DataNucleus Extension)

• Map<Simple, Entity> using join table

• Map<Entity, Entity> using join table

• Map<Simple, Simple> using join table

• Map<Simple, Simple> using AttributeConverter into single column

• Map<Entity, Simple> using join table

• Map<Simple,Entity> - Unidirectional using foreign-key (key stored in the value class)

• Map<Simple,Entity> - Bidirectional using foreign-key (key stored in the value class)


RDBMS supports the full range of options on this page, whereas other datastores
(ODF, Excel, HBase, MongoDB, etc) persist the Collection in a column in the owner
object (as well as a column in the non-owner object when bidirectional) rather
than using join-tables or foreign-keys since those concepts are RDBMS-only.

equals() and hashCode()
Important : The element of a Collection ought to define the methods equals and hashCode so
that updates are detected correctly. This is because any Java Collection will use these to
determine equality and whether an element is contained in the Collection. Note also that the
hashCode() should be consistent throughout the lifetime of a persistable object. By that we mean

72

#one_many_join_uni
#one_many_fk_uni
#one_many_join_bi
#one_many_fk_bi
#one_many_list
#one_many_nonpc_join
#one_many_nonpc_converter
#one_many_shared_join
#one_many_shared_fk
#one_many_map_join_simple_pc
#one_many_map_join_pc_pc
#one_many_map_join_simple_simple
#one_many_map_converter_simple_simple
#one_many_map_join_pc_simple
#one_many_map_fk_uni_key
#one_many_map_fk_bi_key

that it should not use some basis before persistence and then use some other basis (such as the
object identity) after persistence in the equals/hashCode methods.

Collection<Entity> Unidirectional JoinTable
We have 2 sample classes Account and Address. These are related in such a way as Account
contains a Collection of objects of type Address, yet each Address knows nothing about the
Account objects that it relates to. Like this

public class Account
{
 Collection<Address> addresses

 ...
}

public class Address
{
 ...
}

If you define the annotations of the classes like this

public class Account
{
 ...

 @OneToMany
 @JoinTable(name="ACCOUNT_ADDRESSES",
 joinColumns={@JoinColumn(name="ACCOUNT_ID_OID")},
 inverseJoinColumns={@JoinColumn(name="ADDRESS_ID_EID")})
 Collection<Address> addresses
}

public class Address
{
 ...
}

or using XML

73

<entity-mappings>
 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 ...
 <one-to-many name="addresses">
 <join-table name="ACCOUNT_ADDRESSES">
 <join-column name="ACCOUNT_ID_OID"/>
 <inverse-join-column name="ADDRESS_ID_EID"/>
 </join-table>
 </one-to-many>
 </attributes>
 </entity>

 <entity class="Address">
 <table name="ADDRESS"/>
 ...
 </entity>
</entity-mappings>


The crucial part is the join-table element on the field element (@JoinTable
annotation) - this signals to JPA to use a join table.

This will create 3 tables in the database, one for Address, one for Account, and a join table, as
shown below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the
class element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

• To specify the name of the join table, specify the join-table element below the one-to-many
element with the collection.

• To specify the names of the join table columns, use the join-column and inverse-join-column
elements below the join-table element.

• If the field type is Set then the join table will be given a primary key (since a Set cannot have
duplicates), whereas for other Collection types it will not have a primary key (since duplicates
are allowed).

74

Collection<Entity> Unidirectional FK
We have the same classes Account and Address as above for the join table case, but this time we
will store the "relation" as a foreign key in the Address class. So we define the annotations like this

public class Account
{
 ...

 @OneToMany
 @JoinColumn(name="ACCOUNT_ID")
 Collection<Address> addresses
}

public class Address
{
 ...
}

or using XML metadata

<entity-mappings>
 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 ...
 <one-to-many name="addresses">
 <join-column name="ACCOUNT_ID"/>
 </one-to-many>
 </attributes>
 </entity>

 <entity class="Address">
 <table name="ADDRESS"/>
 ...
 </entity>
</entity-mappings>


you MUST specify the join-column here otherwise it defaults to a join table with
JPA!

There will be 2 tables, one for Address, and one for Account. If you wish to specify the names of
the column(s) used in the schema for the foreign key in the Address table you should use the join-
column element within the field of the collection.

75

In terms of operation within your classes of assigning the objects in the relationship. You have to
take your Account object and add the Address to the Account collection field since the Address
knows nothing about the Account.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the
class element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.


Since each Address object can have at most one owner (due to the "Foreign Key")
this mode of persistence will not allow duplicate values in the Collection. If you
want to allow duplicate Collection entries, then use the "Join Table" variant
above.

Collection<Entity> Bidirectional JoinTable
We have our 2 sample classes Account and Address. These are related in such a way as Account
contains a Collection of objects of type Address, and now each Address has a reference to the
Account object that it relates to. Like this

public class Account
{
 Collection<Address> addresses;

 ...
}

public class Address
{
 Account account;

 ...
}

If you define the annotations for these classes as follows

76

public class Account
{
 ...

 @OneToMany(mappedBy="account")
 @JoinTable(name="ACCOUNT_ADDRESSES",
 joinColumns={@JoinColumn(name="ACCOUNT_ID_OID")},
 inverseJoinColumns={@JoinColumn(name="ADDRESS_ID_EID")})
 Collection<Address> addresses;
}

public class Address
{
 ...

 @ManyToOne
 Account account;
}

or alternatively using XML

<entity-mappings>
 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 ...
 <one-to-many name="addresses" mapped-by="account">
 <join-table name="ACCOUNT_ADDRESSES">
 <join-column name="ACCOUNT_ID_OID"/>
 <inverse-join-column name="ADDRESS_ID_EID"/>
 </join-table>
 </one-to-many>
 </attributes>
 </entity>

 <entity class="Address">
 <table name="ADDRESS"/>
 <attributes>
 ...
 <many-to-one name="account"/>
 </attributes>
 </entity>
</entity-mappings>


The crucial part is the join-table element on the field element (or @JoinTable
annotation) - this signals to JPA to use a join table.

This will create 3 tables in the database, one for Address, one for Account, and a join table, as

77

shown below.

The join table is used to link the 2 classes via foreign keys to their primary key. This is useful where
you want to retain the independence of one class from the other class.

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the
class element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

• To specify the name of the join table, specify the join-table element below the one-to-many
element with the collection.

• To specify the names of the join table columns, use the join-column and inverse-join-column
elements below the join-table element.

• If the field type is a Set then the join table will be given a primary key (since a Set cannot have
duplicates), whereas for other Collection types no primary key is assigned.

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.

Collection<Entity> Bidirectional FK
We have the same classes Account and Address as above for the join table case, but this time we
will store the "relation" as a foreign key in the Address class. If you define the annotations for these
classes as follows

78

public class Account
{
 ...

 @OneToMany(mappedBy="account")
 @JoinColumn(name="ACCOUNT_ID")
 Collection<Address> addresses
}

public class Address
{
 ...

 @ManyToOne
 Account account;
}

or alternatively using XML metadata

<entity-mappings>
 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 ...
 <one-to-many name="addresses" mapped-by="account">
 <join-column name="ACCOUNT_ID"/>
 </one-to-many>
 </attributes>
 </entity>

 <entity class="Address">
 <table name="ADDRESS"/>
 <attributes>
 ...
 <many-to-one name="account"/>
 </attributes>
 </entity>
</entity-mappings>


The crucial part is the mapped-by attribute of the field on the "1" side of the
relationship. This tells the JPA implementation to look for a field called account
on the Address class.

This will create 2 tables in the database, one for Address (including an ACCOUNT_ID to link to the
ACCOUNT table), and one for Account. Notice the subtle difference to this set-up to that of the Join
Table relationship earlier.

79

If you wish to fully define the schema table and column names etc, follow these tips

• To specify the name of the table where a class is stored, specify the table element below the
*class*element

• To specify the names of the columns where the fields of a class are stored, specify the column
attribute on the basic element.

• When forming the relation please make sure that you set the relation at BOTH sides since
DataNucleus would have no way of knowing which end is correct if you only set one end.


Since each Address object can have at most one owner (due to the "Foreign Key")
this mode of persistence will not allow duplicate values in the Collection. If you
want to allow duplicate Collection entries, then use the "Join Table" variant
above.

Using a List
In the case of the relation field being a List (i.e ordered), you define the relation just like you would
for a Collection (above) but then define whether you want the relation to be either ordered or
indexed.

In the case of ordered you would add the following to the metadata of the field

@OrderBy("city")

or using XML

<order-by>city</order-by>

This means that when the elements of the List are retrieved then they will be ordered according to
the city field of the element.

If instead you want an indexed list then the elements will have an index stored against them, hence
preserving the order in which they were in the original List. This adds a surrogate column to either
the table of the element (when using foreign key) or to the join table.

@OrderColumn("ORDERING")

or using XML

80

<order-column>ORDERING</order-column>

Collection<Simple> via JoinTable
All of the examples above show a 1-N relationship between 2 entities. If you want the element to be
primitive or Object types then follow this section. For example, when you have a Collection of
Strings. This will be persisted in the same way as the "Join Table" examples above. A join table is
created to hold the collection elements. Let’s take our example. We have an Account that stores a
Collection of addresses. These addresses are simply Strings. We define the annotations like this

@Entity
public class Account
{
 ...

 @ElementCollection
 @CollectionTable(name="ACCOUNT_ADDRESSES")
 Collection<String> addresses;
}

or using XML metadata

<entity class="mydomain.Account">
 <attributes>
 ...
 <element-collection name="addresses">
 <collection-table name="ACCOUNT_ADDRESSES"/>
 </element-collection>
 </attributes>
</entity>

In the datastore the following is created

The ACCOUNT table is as before, but this time we only have the "join table". Use @Column on the
field/method to define the column details of the element in the join table.

Collection<Simple> using AttributeConverter via
column
Just like in the above example, here we have a Collection of simple types. In this case we are

81

wanting to store this Collection into a single column in the owning table. We do this by using a JPA
AttributeConverter.

public class Account
{
 ...

 @ElementCollection
 @Convert(CollectionStringToStringConverter.class)
 @Column(name="ADDRESSES")
 Collection<String> addresses;
}

and then define our converter. You can clearly define your conversion process how you want it.
You could, for example, convert the Collection into comma-separated strings, or could use JSON, or
XML, or some other format.

public class CollectionStringToStringConverter implements AttributeConverter
<Collection<String>, String>
{
 public String convertToDatabaseColumn(Collection<String> attribute)
 {
 if (attribute == null)
 {
 return null;
 }

 StringBuilder str = new StringBuilder();
 ... convert Collection to String
 return str.toString();
 }

 public Collection<String> convertToEntityAttribute(String columnValue)
 {
 if (columnValue == null)
 {
 return null;
 }

 Collection<String> coll = new HashSet<String>();
 ... convert String to Collection
 return coll;
 }
}

82

Collection<Entity> via Shared JoinTable

The relationships using join tables shown above rely on the join table relating to the relation in
question. DataNucleus allows the possibility of sharing a join table between relations. The example
below demonstrates this. We take the example as show above (1-N Unidirectional Join table
relation), and extend Account to have 2 collections of Address records. One for home addresses
and one for work addresses, like this

public class Account
{
 Collection<Address> workAddresses;

 Collection<Address> homeAddresses;

 ...
}

We now change the metadata we had earlier to allow for 2 collections, but sharing the join table

import org.datanucleus.api.jpa.annotations.SharedRelation;

public class Account
{
 @OneToMany
 @JoinTable(name="ACCOUNT_ADDRESSES",
 joinColumns={@JoinColumn(name="ACCOUNT_ID_OID")},
 inverseJoinColumns={@JoinColumn(name="ADDRESS_ID_EID")})
 @SharedRelation(column="ADDRESS_TYPE", value="work")
 Collection<Address> workAddresses;

 @OneToMany
 @JoinTable(name="ACCOUNT_ADDRESSES",
 joinColumns={@JoinColumn(name="ACCOUNT_ID_OID")},
 inverseJoinColumns={@JoinColumn(name="ADDRESS_ID_EID")})
 @SharedRelation(column="ADDRESS_TYPE", value="home")
 Collection<Address> homeAddresses;

 ...
}

or using XML metadata

83

#one_many_join_uni

<entity-mappings>
 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 ...
 <one-to-many name="workAddresses">
 <join-table name="ACCOUNT_ADDRESSES">
 <join-column name="ACCOUNT_ID_OID"/>
 <inverse-join-column name="ADDRESS_ID_EID"/>
 </join-table>
 <extension key="relation-discriminator-column" value="ADDRESS_TYPE"/>
 <extension key="relation-discriminator-value" value="work"/>
 <!--extension key="relation-discriminator-pk" value="true"/-->
 </one-to-many>
 <one-to-many name="homeAddresses">
 <join-table name="ACCOUNT_ADDRESSES">
 <join-column name="ACCOUNT_ID_OID"/>
 <inverse-join-column name="ADDRESS_ID_EID"/>
 </join-table>
 <extension key="relation-discriminator-column" value="ADDRESS_TYPE"/>
 <extension key="relation-discriminator-value" value="home"/>
 <!--extension key="relation-discriminator-pk" value="true"/-->
 </one-to-many>
 </attributes>
 </entity>

 <entity class="Address">
 <table name="ADDRESS"/>
 ...
 </entity>
</entity-mappings>

So we have defined the same join table for the 2 collections "ACCOUNT_ADDRESSES", and the same
columns in the join table, meaning that we will be sharing the same join table to represent both
relations. The important step is then to define the 3 DataNucleus extension tags. These define a
column in the join table (the same for both relations), and the value that will be populated when a
row of that collection is inserted into the join table. In our case, all "home" addresses will have a
value of "home" inserted into this column, and all "work" addresses will have "work" inserted. This
means we can now identify easily which join table entry represents which relation field.

This results in the following database schema

84

Collection<Entity> via Shared FK

The relationships using foreign keys shown above rely on the foreign key relating to the relation in
question. DataNucleus allows the possibility of sharing a foreign key between relations between the
same classes. The example below demonstrates this. We take the example as show above (1-N
Unidirectional Foreign Key relation), and extend Account to have 2 collections of Address records.
One for home addresses and one for work addresses, like this

public class Account
{
 Collection<Address> workAddresses;

 Collection<Address> homeAddresses;

 ...
}

We now change the metadata we had earlier to allow for 2 collections, but sharing the join table

import org.datanucleus.api.jpa.annotations.SharedRelation;

public class Account
{
 ...

 @OneToMany
 @SharedRelation(column="ADDRESS_TYPE", value="work")
 Collection<Address> workAddresses;

 @OneToMany
 @SharedRelation(column="ADDRESS_TYPE", value="home")
 Collection<Address> homeAddresses;

 ...
}

or using XML metadata

85

#one_many_fk_uni

<entity-mappings>
 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 ...
 <one-to-many name="workAddresses">
 <join-column name="ACCOUNT_ID_OID"/>
 <extension key="relation-discriminator-column" value="ADDRESS_TYPE"/>
 <extension key="relation-discriminator-value" value="work"/>
 </one-to-many>
 <one-to-many name="homeAddresses">
 <join-column name="ACCOUNT_ID_OID"/>
 <extension key="relation-discriminator-column" value="ADDRESS_TYPE"/>
 <extension key="relation-discriminator-value" value="home"/>
 </one-to-many>
 </attributes>
 </entity>

 <entity class="Address">
 <table name="ADDRESS"/>
 ...
 </entity>
</entity-mappings>

So we have defined the same foreign key for the 2 collections "ACCOUNT_ID_OID", The important
step is then to define the 2 DataNucleus extension tags (@SharedRelation annotation). These define
a column in the element table (the same for both relations), and the value that will be populated
when a row of that collection is inserted into the element table. In our case, all "home" addresses
will have a value of "home" inserted into this column, and all "work" addresses will have "work"
inserted. This means we can now identify easily which element table entry represents which
relation field.

This results in the following database schema

Map<Simple, Entity> via JoinTable
We have a class Account that contains a Map of Address objects. Here our key is a simple type (in
this case a String) and the values are entities. Like this

86

public class Account
{
 Map<String, Address> addresses;

 ...
}

public class Address {...}

If you define the annotations for these classes as follows

@Entity
public class Account
{
 @OneToMany
 @JoinTable
 Map<String, Address> addresses;

 ...
}

@Entity
public class Address {...}

This will create 3 tables in the datastore, one for Account, one for Address and a join table also
containing the key.

You can configure the names of the key column(s) in the join table using the joinColumns attribute
of @CollectionTable, or the names of the value column(s) using @Column for the field/method.


The column ADPT_PK_IDX is added by DataNucleus when the column type of the
key is not valid to be part of a primary key (with the RDBMS being used). If the
column type of your key is acceptable for use as part of a primary key then you
will not have this "ADPT_PK_IDX" column.

Map<Simple, Simple> via JoinTable
Here our keys and values are of simple types (in this case a String). Like this

87

public class Account
{
 Map<String, String> addresses;

 ...
}

If you define the annotations for these classes as follows

@Entity
public class Account
{
 @ElementCollection
 @CollectionTable
 Map<String, String> addresses;

 ...
}

This results in just 2 tables. The "join" table contains both the key AND the value.

You can configure the names of the key column(s) in the join table using the joinColumns attribute
of @CollectionTable, or the names of the value column(s) using @Column for the field/method.

Please note that the column ADPT_PK_IDX is added by DataNucleus when the column type of the
key is not valid to be part of a primary key (with the RDBMS being used). If the column type of your
key is acceptable for use as part of a primary key then you will not have this "ADPT_PK_IDX"
column.

Map<Simple, Simple> using AttributeConverter via
column
Just like in the above example, here we have a Map of simple keys/values. In this case we are
wanting to store this Map into a single column in the owning table. We do this by using a JPA
AttributeConverter.

88

public class Account
{
 ...

 @ElementCollection
 @Convert(MapStringStringToStringConverter.class)
 @Column(name="ADDRESSES")
 Map<String, String> addresses;
}

and then define our converter. You can clearly define your conversion process how you want it.
You could, for example, convert the Map into comma-separated strings, or could use JSON, or XML,
or some other format.

public class MapStringStringToStringConverter implements AttributeConverter<Map<
String, String>, String>
{
 public String convertToDatabaseColumn(Map<String, String> attribute)
 {
 if (attribute == null)
 {
 return null;
 }

 StringBuilder str = new StringBuilder();
 ... convert Map to String
 return str.toString();
 }

 public Map<String, String> convertToEntityAttribute(String columnValue)
 {
 if (columnValue == null)
 {
 return null;
 }

 Map<String, String> map = new HashMap<String, String>();
 ... convert String to Map
 return map;
 }
}

Map<Entity, Entity> via JoinTable
We have a class Account that contains a Map of Address objects. Here our key is an entity type and
the values is an entity type also. Like this

89

public class Account
{
 Map<Name, Address> addresses;

 ...
}

public class Name {...}

public class Address {...}

If you define the annotations for these classes as follows

@Entity
public class Account
{
 @OneToMany
 @JoinTable
 Map<Name, Address> addresses;

 ...
}

@Entity
public class Name {...}

@Entity
public class Address {...}

This will create 4 tables in the datastore, one for Account, one for Name, one for Address and a
join table to link them.

You can configure the names of the key column(s) in the join table using the joinColumns attribute
of @JoinTable, or the names of the value column(s) using @Column for the field/method.


The column ADPT_PK_IDX is added by DataNucleus when the column type of the
key is not valid to be part of a primary key (with the RDBMS being used). If the
column type of your key is acceptable for use as part of a primary key then you
will not have this "ADPT_PK_IDX" column.

90

Map<Entity, Simple> via JoinTable
Here our key is an entity type and the value is a simple type (in this case a String).



JPA does NOT properly allow for this in its specification. Other implementations
introduced the following hack so we also provide it. Note that there is no
@OneToMany annotation here so this is seemingly not a relation to JPA (hence
our description of this as a hack). Anyway use it to workaround JPA’s lack of
feature.

If you define the Meta-Data for these classes as follows

@Entity
public class Account
{
 @ElementCollection
 @JoinTable
 Map<Address, String> addressLookup;

 ...
}

@Entity
public class Address {...}

This will create 3 tables in the datastore, one for Account, one for Address and a join table also
containing the value.

You can configure the names of the columns in the join table using the joinColumns attributes of the
various annotations.

Map<Simple,Entity> Unidirectional FK (key stored in
value)
In this case we have an object with a Map of objects and we’re associating the objects using a
foreign-key in the table of the value. We’re using a field (alias) in the Address class as the key of the
map.

91

public class Account
{
 Map<String, Address> addresses;

 ...
}

public class Address
{
 String alias;

 ...
}

In this relationship, the Account class has a Map of Address objects, yet the Address knows
nothing about the Account. In this case we don’t have a field in the Address to link back to the
Account and so DataNucleus has to use columns in the datastore representation of the Address
class. So we define the annotations like this

@Entity
public class Account
{
 @OneToMany
 @MapKey(name="alias")
 @JoinColumn(name="ACCOUNT_ID_OID")
 Map<String, Address> addresses;

 ...
}

@Entity
public class Address
{
 String alias;

 ...
}

or using XML metadata

92

<entity-mappings>
 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 ...
 <one-to-many name="addresses">
 <map-key name="alias"/>
 <join-column name="ACCOUNT_ID_OID"/>
 </one-to-many>
 </attributes>
 </entity>

 <entity class="Address">
 <table name="ADDRESS"/>
 <attributes>
 ...
 <basic name="alias">
 <column name="KEY" length="20"/>
 </basic>
 </attributes>
 </entity>
</entity-mappings>

Again there will be 2 tables, one for Address, and one for Account. If you wish to specify the names
of the columns used in the schema for the foreign key in the Address table you should use the join-
column element within the field of the map.

In terms of operation within your classes of assigning the objects in the relationship. You have to
take your Account object and add the Address to the Account map field since the Address knows
nothing about the Account. Also be aware that each Address object can have only one owner, since
it has a single foreign key to the Account.

Map<Simple,Entity> Bidirectional FK (key stored in
value)
In this case we have an object with a Map of objects and we’re associating the objects using a
foreign-key in the table of the value.

93

public class Account
{
 long id;

 Map<String, Address> addresses;

 ...
}

public class Address
{
 long id;

 String alias;

 Account account;

 ...
}

With these classes we want to store a foreign-key in the value table (ADDRESS), and we want to use
the "alias" field in the Address class as the key to the map. If you define the Meta-Data for these
classes as follows

<entity-mappings>
 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 ...
 <one-to-many name="addresses" mapped-by="account">
 <map-key name="alias"/>
 </one-to-many>
 </attributes>
 </entity>

 <entity class="Address">
 <table name="ADDRESS"/>
 <attributes>
 ...
 <basic name="alias">
 <column name="KEY" length="20"/>
 </basic>
 <many-to-one name="account">
 <join-column name="ACCOUNT_ID_OID"/>
 </many-to-one>
 </attributes>
 </entity>
</entity-mappings>

94

This will create 2 tables in the datastore. One for Account, and one for Address. The table for
Address will contain the key field as well as an index to the Account record (notated by the
mapped-by tag).

95

N-1 Relations
You have a N-to-1 relationship when an object of a class has an associated object of another class
(only one associated object) and several of this type of object can be linked to the same associated
object. From the other end of the relationship it is effectively a 1-N, but from the point of view of
the object in question, it is N-1. You can create the relationship in 2 ways depending on whether the
2 classes know about each other (bidirectional), or whether only the "N" side knows about the other
class (unidirectional). These are described below.


For RDBMS a N-1 relation is stored as a foreign-key column(s). For non-RDBMS it
is stored as a String "column" storing the 'id' (possibly with the class-name
included in the string) of the related object.

Unidirectional with ForeignKey
For this case you could have 2 classes, User and Account, as below.

public class Account
{
 User user;

 ...
}

public class User
{
 ...
}

so the Account class ("N" side) knows about the User class ("1" side), but not vice-versa. A particular
user could be related to several accounts. If you define the annotations for these classes as follows

@Entity
public class Account
{
 ...

 @ManyToOne
 User user;
}

or using XML metadata

96

<entity-mappings>
 <entity class="User">
 <table name="USER"/>
 <attributes>
 <id name="id">
 <column name="USER_ID"/>
 </id>
 ...
 </attributes>
 </entity>

 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 <id name="id">
 <column name="ACCOUNT_ID"/>
 </id>
 ...
 <many-to-one name="user"/>
 </attributes>
 </entity>
</entity-mappings>

This will create 2 tables in the database, one for User (with name USER), and one for Account (with
name ACCOUNT), and a foreign-key in the ACCOUNT table, just like for the case of a @OneToOne
relation.

Note that in the case of non-RDBMS datastores there is simply a "column" in the ACCOUNT "table",
storing the "id" of the related object*

Unidirectional with JoinTable
For this case we have the same 2 classes, User and Account, as before.

public class Account
{
 User user;

 ...
}

public class User
{
 ...
}

so the Account class ("N" side) knows about the User class ("1" side), but not vice-versa, and are
using a join table. A particular user could be related to several accounts. If you define the

97

mapping.html#one_one_uni
mapping.html#one_one_uni

annotations for these classes as follows

@Entity
public class Account
{
 @ManyToOne
 @JoinTable(name="ACCOUNT_USER")
 User user;

}

or using XML metadata

<entity-mappings>
 <entity class="User">
 <table name="USER"/>
 <attributes>
 <id name="id">
 <column name="USER_ID"/>
 </id>
 ...
 </attributes>
 </entity>

 <entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 <id name="id">
 <column name="ACCOUNT_ID"/>
 </id>
 ...
 <many-to-one name="user">
 <join-table name="ACCOUNT_USER"/>
 </many-to-one>
 </attributes>
 </entity>
</entity-mappings>

alternatively using annotations

This will create 3 tables in the database, one for User (with name USER), one for Account (with
name ACCOUNT), and a join table (with name ACCOUNT_USER), as shown below.

98

Note that in the case of non-RDBMS datastores there is no join-table, simply a "column" in the
ACCOUNT "table", storing the "id" of the related object

Bidirectional
This relationship is described in the guide for 1-N relationships. In particular there are 2 ways to
define the relationship for RDBMS : the first uses a Join Table to hold the relationship, whilst the
second uses a Foreign Key in the "N" object to hold the relationship. For non-RDBMS datastores each
side will have a "column" (or equivalent) in the "table" of the N side storing the "id" of the related
(owning) object. Please refer to the 1-N relationships bidirectional relations since they show this
exact relationship.

99

mapping.html#one_many_relations
mapping.html#one_many_join_bi
mapping.html#one_many_fk_bi

M-N Relations
You have a M-to-N (or Many-to-Many) relationship if an object of a class A has associated objects of
class B, and class B has associated objects of class A. This relationship may be achieved through
Java Collection, Set, List or subclasses of these, although the only one that supports a true M-N is
Set.

With DataNucleus this can be set up as described in this section, using what is called a Join Table
relationship. Let’s take the following example and describe how to model it with the different types
of collection classes. We have 2 classes, Product and Supplier as below.

public class Product
{
 Set<Supplier> suppliers;

 ...
}

public class Supplier
{
 Set<Product> products;

 ...
}

Here the Product class knows about the Supplier class. In addition the Supplier knows about the
Product class, however with these relationships are really independent.



Please note that RDBMS supports the full range of options on this page, whereas
other datastores (ODF, Excel, HBase, MongoDB, etc) persist the Collection in a
column in the owner object (as well as a column in the non-owner object when
bidirectional) rather than using join-tables or foreign-keys since those concepts
are RDBMS-only.


when adding objects to an M-N relation, you MUST add to the owner side as a
minimum, and optionally also add to the non-owner side. Just adding to the non-
owner side will not add the relation.


If you want to delete an object from one end of a M-N relationship you will have
to remove it first from the other objects relationship. If you don’t you will get an
error message that the object to be deleted has links to other objects and so
cannot be deleted.

The various possible relationships are described below.

• M-N Set relation

100

#many_many_set

•

M-N Ordered List relation

equals() and hashCode()
Important : The element of a Collection ought to define the methods equals and hashCode so
that updates are detected correctly. This is because any Java Collection will use these to
determine equality and whether an element is contained in the Collection. Note also that the
hashCode() should be consistent throughout the lifetime of a persistable object. By that we mean
that it should not use some basis before persistence and then use some other basis (such as the
object identity) after persistence in the equals/hashCode methods.

Using Set
If you define the Meta-Data for these classes as follows

public class Product
{
 ...

 @ManyToMany(mappedBy="products")
 @JoinTable(name="PRODUCTS_SUPPLIERS",
 joinColumns={@JoinColumn(name="PRODUCT_ID")},
 inverseJoinColumns={@JoinColumn(name="SUPPLIER_ID")})
 Set<Supplier> suppliers
}

public class Supplier
{
 ...

 @ManyToMany
 Set<Product> products;

 ...
}

or using XML metadata

101

#many_many_list_ordered

<entity-mappings>
 <entity class="mydomain.Product">
 <table name="PRODUCT"/>
 <attributes>
 <id name="id">
 <column name="PRODUCT_ID"/>
 </id>
 ...
 <many-to-many name="suppliers" mapped-by="products">
 <join-table name="PRODUCTS_SUPPLIERS">
 <join-column name="PRODUCT_ID"/>
 <inverse-join-column name="SUPPLIER_ID"/>
 </join-table>
 </many-to-many>
 </attributes>
 </entity>

 <entity class="mydomain.Supplier">
 <table name="SUPPLIER"/>
 <attributes>
 <id name="id">
 <column name="SUPPLIER_ID"/>
 </id>
 ...
 <many-to-many name="products"/>
 </attributes>
 </entity>
</entity-mappings>

Note how we have specified the information only once regarding join table name, and join column
names as well as the <join-table>. This is the JPA standard way of specification, and results in a
single join table. The "mapped-by" ties the two fields together.

Using Ordered Lists
In this case our fields are of type List instead of Set used above. If you define the annotations for
these classes as follows

102

public class Product
{
 ...

 @ManyToMany
 @JoinTable(name="PRODUCTS_SUPPLIERS",
 joinColumns={@JoinColumn(name="PRODUCT_ID")},
 inverseJoinColumns={@JoinColumn(name="SUPPLIER_ID")})
 @OrderBy("id")
 List<Supplier> suppliers
}

public class Supplier
{
 ...

 @ManyToMany
 @OrderBy("id")
 List<Product> products
}

or using XML metadata

103

<entity-mappings>
 <entity class="mydomain.Product">
 <table name="PRODUCT"/>
 <attributes>
 <id name="id">
 <column name="PRODUCT_ID"/>
 </id>
 ...
 <many-to-many name="suppliers" mapped-by="products">
 <order-by>name</order-by>
 <join-table name="PRODUCTS_SUPPLIERS">
 <join-column name="PRODUCT_ID"/>
 <inverse-join-column name="SUPPLIER_ID"/>
 </join-table>
 </many-to-many>
 </attributes>
 </entity>

 <entity class="mydomain.Supplier">
 <table name="SUPPLIER"/>
 <attributes>
 <id name="id">
 <column name="SUPPLIER_ID"/>
 </id>
 ...
 <many-to-many name="products">
 <order-by>name</order-by>
 </many-to-many>
 </attributes>
 </entity>
</entity-mappings>

There will be 3 tables, one for Product, one for Supplier, and the join table. The difference from
the Set example is that we now have <order-by> at both sides of the relation. This has no effect in
the datastore schema but when the Lists are retrieved they are ordered using the specified order-by.


You cannot have a many-to-many relation using indexed lists since both sides
would need its own index.

104

Arrays
JPA defines support the persistence of arrays but only arrays of byte, Byte, char, Character.
DataNucleus supports all types of arrays, as follows

• Single Column - the array is byte-streamed into a single column in the table of the containing
object.

• Simple array stored in JoinTable - the array is stored in a "join" table, with a column in that table
storing each element of the array

• Entity array via JoinTable - the array is stored via a "join" table, with FK across to the element
Entity.

• Entity array via ForeignKey - the array is stored via a FK in the element Entity.

Single Column Arrays (serialised)
Let’s suppose you have a class something like this

public class Account
{
 byte[] permissions;

 ...
}

So we have an Account and it has a number of permissions, each expressed as a byte. We want to
persist the permissions in a single-column into the table of the account. We then define MetaData
something like this

<entity class="Account">
 <table name="ACCOUNT"/>
 <attributes>
 ...
 <basic name="permissions">
 <column name="PERMISSIONS"/>
 <lob/>
 </basic>
 ...
 </attributes>
</entity>

This results in a datastore schema as follows

105

#array_singlecolumn
#array_join_nonpc
#array_join
#array_fk

See also :-

• MetaData reference for <basic> element

• Annotations reference for @Basic

Simple array stored in join table
If you want an array of non-entity objects be stored in a "join" table, you can follow this example.
We have an Account that stores a Collection of addresses. These addresses are simply Strings. We
define the annotations like this

@Entity
public class Account
{
 ...

 @ElementCollection
 @CollectionTable(name="ACCOUNT_ADDRESSES")
 String[] addresses;
}

or using XML metadata

<entity class="mydomain.Account">
 <attributes>
 ...
 <element-collection name="addresses">
 <collection-table name="ACCOUNT_ADDRESSES"/>
 </element-collection>
 </attributes>
</entity>

In the datastore the following is created

Use @Column on the field/method to define the column details of the element in the join table.

106

metadata_xml.html#basic
annotations.html#Basic

Entity array persisted into Join Tables
DataNucleus will support arrays persisted into a join table. Let’s take the example of a class Account
with an array of Permission objects, so we have

public class Account
{
 ...

 Permission[] permissions;
}

public class Permission
{
 ...
}

So an Account has an array of *Permission*s, and both of these objects are entities. We want to
persist the relationship using a join table. We define the MetaData as follows

@Entity
public class Account
{
 ...

 @OneToMany
 @JoinTable(name="ACCOUNT_PERMISSIONS", joinColumns={@Column(name="ACCOUNT_ID")},
inverseJoinColumns={@Column(name="PERMISSION_ID")})
 @OrderColumn(name="PERMISSION_ORDER_IDX")
 Permission[] permissions;
}

@Entity
public class Permission
{
 ...
}

or using XML metadata

107

<entity class="mydomain.Account">
 <attributes>
 ...
 <one-to-many name="permissions">
 <join-table name="ACCOUNT_PERMISSIONS">
 <join-column name="ACCOUNT_ID"/>
 <inverse-join-column name="PERMISSION_ID"/>
 </join-table>
 <order-column name="PERMISSION_ORDER_IDX"/>
 </one-to-many>
 </attributes>
</entity>
<entity name="Permission" table="PERMISSION">
</entity>

This results in a datastore schema as follows

Entity array persisted using Foreign-Keys
DataNucleus will support arrays persisted via a foreign-key in the element table. This is only
applicable when the array is an entity. Let’s take the same example above. So we have

public class Account
{
 ...

 Permission[] permissions;
}

public class Permission
{
 ...
}

So an Account has an array of *Permission*s, and both of these objects are entities. We want to
persist the relationship using a foreign-key in the table for the Permission class. We define the
MetaData as follows

108

@Entity
public class Account
{
 @OneToMany
 @JoinColumn(name="ACCOUNT_ID")
 @OrderColumn(name="PERMISSION_ORDER_IDX")
 Permission[] permissions;

}

@Entity
public class Permission
{
 ...
}

or using XML metadata

<entity class="mydomain.Account">
 <attributes>
 ...
 <one-to-many name="permissions">
 <join-column name="ACCOUNT_ID"/>
 <order-column name="PERMISSION_ORDER_IDX"/>
 </one-to-many>
 </attributes>
</entity>
<entity name="Permission" table="PERMISSION">
</entity>

This results in a datastore schema as follows

109

Interfaces

JPA doesn’t define support for persisting fields of type interface, but DataNucleus provides an
extension whereby the implementations of the interface are entities. It follows the same general
process as for java.lang.Object since both interfaces and java.lang.Object are basically references to
some entity.

To demonstrate interface handling let’s introduce some classes. Suppose you have an interface with
a selection of classes implementing the interface something like this

public interface Shape
{
 double getArea();
}

public class Circle implements Shape
{
 double radius;
 ...
}

public class Square implements Shape
{
 double length;
 ...
}

public Rectange implements Shape
{
 double width;
 double length;
 ...
}

You then have a class that contains an object of this interface type

public class ShapeHolder
{
 protected Shape shape=null;
 ...
}

DataNucleus allows the following strategies for mapping this field

• per-implementation : a FK is created for each implementation so that the datastore can
provide referential integrity. The other advantage is that since there are FKs then querying can

110

mapping.html#objects

be performed. The disadvantage is that if there are many implementations then the table can
become large with many columns not used

• identity : a single column is added and this stores the class name of the implementation stored,
as well as the identity of the object. The advantage is that if you have large numbers of
implementations then this can cope with no schema change. The disadvantages are that no
querying can be performed, and that there is no referential integrity.

• xcalia : a slight variation on "identity" whereby there is a single column yet the contents of that
column are consistent with what Xcalia XIC JDO implementation stored there.

The user controls which one of these is to be used by specifying the extension mapping-strategy on
the field containing the interface. The default is "per-implementation"

In terms of the implementations of the interface, you can either leave the field to accept any known
about implementation, or you can restrict it to only accept some implementations (see
"implementation-classes" metadata extension). If you are leaving it to accept any persistable
implementation class, then you need to be careful that such implementations are known to
DataNucleus at the point of encountering the interface field. By this we mean, DataNucleus has to
have encountered the metadata for the implementation so that it can allow for the implementation
when handling the field. You can force DataNucleus to know about a persistable class by using an
autostart mechanism, or using persistence.xml.

1-1 Interface Relation
To allow persistence of this interface field with DataNucleus you have 2 levels of control. The first
level is global control. Since all of our Square, Circle, Rectangle classes implement Shape then we
just define them in the MetaData as we would normally.

@Entity
public class Square implement Shape
{
 ...
}
@Entity
public class Circle implement Shape
{
 ...
}
@Entity
public class Rectangle implement Shape
{
 ...
}

The global way means that when mapping that field DataNucleus will look at all Entities it knows
about that implement the specified interface.

DataNucleus also allows users to specify a list of classes implementing the interface on a field-by-

111

field basis, defining which of these implementations are accepted for a particular interface field. To
do this you define the Meta-Data like this

@Entity
public class ShapeHolder
{
 @OneToOne
 @Extension(key="implementation-classes",
 value="mydomain.Circle,mydomain.Rectangle,mydomain.Square")
 Shape shape;

 ...
}

That is, for any interface object in a class to be persisted, you define the possible implementation
classes that can be stored there. DataNucleus interprets this information and will map the above
example classes to the following in the database

So DataNucleus adds foreign keys from the containers table to all of the possible implementation
tables for the shape field.

If we use mapping-strategy of "identity" then we get a different datastore schema.

@Entity
public class ShapeHolder
{
 @OneToOne
 @Extension(key="implementation-classes", value
="mydomain.Circle,mydomain.Rectangle,mydomain.Square")
 @Extension(key="mapping-strategy", value="identity")
 Shape shape;

 ...
}

112

and the datastore schema becomes

and the column "SHAPE" will contain strings such as mydomain.Circle:1 allowing retrieval of the
related implementation object.

1-N Interface Relation
You can have a Collection/Map containing elements of an interface type. You specify this in the
same way as you would any Collection/Map. You can have a Collection of interfaces as long as
you use a join table relation and it is unidirectional. The "unidirectional" restriction is that the
interface is not persistent on its own and so cannot store the reference back to the owner object.
Use the 1-N relationship guides for the metadata definition to use.

You need to use a DataNucleus extension tag "implementation-classes" if you want to restrict the
collection to only contain particular implementations of an interface. For example

@Entity
public class ShapeHolder
{
 @OneToMany
 @JoinTable
 @Extension(key="implementation-classes", value
="mydomain.Circle,mydomain.Rectangle,mydomain.Square")
 @Extension(key="mapping-strategy", value="identity")
 Collection<Shape> shapes;

 ...
}

So the shapes field is a Collection of mydomain.Shape and it will accept the implementations of type
Circle, Rectangle, Square and Triangle. If you omit the implementation-classes tag then you have
to give DataNucleus a way of finding the metadata for the implementations prior to encountering
this field.

Dynamic Schema Updates (RDBMS)
The default mapping strategy for interface fields and collections of interfaces is to have separate FK

113

column(s) for each possible implementation of the interface. Obviously if you have an application
where new implementations are added over time the schema will need new FK column(s) adding to
match. This is possible if you enable the persistence property
datanucleus.rdbms.dynamicSchemaUpdates, setting it to true. With this set, any insert/update
operation of an interface related field will do a check if the implementation being stored is known
about in the schema and, if not, will update the schema accordingly.

114

java.lang.Object

JPA doesn’t specify support for persisting fields of type java.lang.Object, however DataNucleus does
support this where the values of that field are entities themselves. This follows the same general
process as for Interfaces since both interfaces and java.lang.Object are basically references to some
entity.


java.lang.Object cannot be used to persist non-entities with fixed schema
datastore (e.g RDBMS). Think of how you would expect it to be stored if you think
it ought to

DataNucleus allows the following ways of persisting Object fields :-

• per-implementation : a FK is created for each "implementation" so that the datastore can
provide referential integrity. The other advantage is that since there are FKs then querying can
be performed. The disadvantage is that if there are many implementations then the table can
become large with many columns not used

• identity : a single column is added and this stores the class name of the "implementation"
stored, as well as the identity of the object. The disadvantages are that no querying can be
performed, and that there is no referential integrity.

• xcalia : a slight variation on "identity" whereby there is a single column yet the contents of that
column are consistent with what Xcalia XIC JDO implementation stored there.

The user controls which one of these is to be used by specifying the extension mapping-strategy on
the field containing the interface. The default is "per-implementation"

1-1/N-1 Object Relation
Let’s suppose you have a field in a class and you have a selection of possible persistable class that
could be stored there, so you decide to make the field a java.lang.Object. So let’s take an example.
We have the following class

public class ParkingSpace
{
 String location;
 Object occupier;
}

So we have a space in a car park, and in that space we have an occupier of the space. We have some
legacy data and so can’t make the type of this "occupier" an interface type, so we just use
java.lang.Object. Now we know that we can only have particular types of objects stored there (since
there are only a few types of vehicle that can enter the car park). So we define our annotations like
this

115

mapping.html#interfaces

@Entity
public class ParkingSpace
{
 String location;

 @OneToOne
 @Extension(key="implementation-classes", value
="mydomain.samples.vehicles.Car,mydomain.samples.vehicles.Motorbike")
 Object occupier;
}

This will result in the following database schema.

So DataNucleus adds foreign keys from the ParkingSpace table to all of the possible implementation
tables for the occupier field.

In conclusion, when using "per-implementation" mapping for any java.lang.Object field in a class to
be persisted (as non-serialised), you must define the possible "implementation" classes that can be
stored there.

If we use mapping-strategy of "identity" then we get a different datastore schema.

public class ParkingSpace
{
 String location;

 @OneToOne
 @Extension(key="implementation-classes", value
="mydomain.samples.vehicles.Car,mydomain.samples.vehicles.Motorbike")
 @Extension(key="mapping-strategy", value="identity")
 Object occupier;
}

and the datastore schema becomes

116

and the column "OCCUPIER" will contain strings such as com.mydomain.samples.object.Car:1
allowing retrieval of the related implementation object.

1-N Object Relation
You can have a Collection/Map containing elements of java.lang.Object. You specify this in the same
way as you would any Collection/Map. DataNucleus supports having a Collection of references with
multiple implementation types as long as you use a join table relation.

Serialised Objects
By default a field of type java.lang.Object is stored as an instance of the underlying entity in the
table of that object. If either your Object field represents non-entities or you simply wish to serialise
the Object into the same table as the owning object, you need to specify it as "lob", like this

public class MyClass
{
 @Lob
 Object myObject;
}

Please refer to the serialised fields guide for more details of storing objects in this way.

117

mapping.html#serialise_field

Embedded Fields
The JPA persistence strategy typically involves persisting the fields of any class into its own table,
and representing any relationships from the fields of that class across to other tables. There are
occasions when this is undesirable, maybe due to an existing datastore schema, or because a more
convenient datastore model is required. JPA allows the persistence of fields as embedded typically
into the same table as the "owning" class.

One important decision when defining objects of a type to be embedded into another type is
whether objects of that type will ever be persisted in their own right into their own table, and have
an identity. JPA allows you to mark a class as @Embeddable (instead of @Entity) in this case.

@Embeddable
public class MyClass {}

or using XML metadata

<embeddable name="mydomain.MyClass">
 ...
</embeddable>

With the above MetaData (using the embeddable definition), in our application any objects of the
class MyClass can be embedded into other objects.

JPA’s definition of embedding encompasses several types of fields. These are described below

• Embedded Entities - where you have a 1-1 relationship and you want to embed the other Entity
into the same table as the your object

• Embedded Nested Entities - like the first example except that the other object also has another
Entity that also should be embedded

• Embedded Collection elements - where you want to embed the elements of a collection into a
join table (instead of persisting them into their own table)

• Embedded Map keys/values - where you want to embed the keys/values of a map into a join
table (instead of persisting them into their own table)

With respect to what types of fields you can have in an embedded class, DataNucleus supports all
basic types, as well as 1-1/N-1 relations (where the foreign-key is at the embedded object side), and
some 1-N/M-N relations.


whilst nested embedded members are supported, you cannot use recursive
embedded objects since that would require potentially infinite columns in the
owner table, or infinite embedded join tables.

118

#embedded_entity
#embedded_entity_nested
#embedded_collection
#embedded_map

Embedding entities (1-1)


Applicable to RDBMS, Excel, OOXML, ODF, HBase, MongoDB, Neo4j, Cassandra,
JSON

In a typical 1-1 relationship between 2 classes, the 2 classes in the relationship are persisted to their
own table, and a foreign key is managed between them. With JPA and DataNucleus you can persist
the related entity object as embedded into the same table. This results in a single table in the
datastore rather than one for each of the 2 classes.

Let’s take an example. We are modelling a Computer, and in our simple model our Computer has a
graphics card and a sound card. So we model these cards using a ComputerCard class. So our
classes become

119

public class Computer
{
 private String operatingSystem;

 private ComputerCard graphicsCard;

 private ComputerCard soundCard;

 public Computer(String osName, ComputerCard graphics, ComputerCard sound)
 {
 this.operatingSystem = osName;
 this.graphicsCard = graphics;
 this.soundCard = sound;
 }

 ...
}

public class ComputerCard
{
 public static final int ISA_CARD = 0;
 public static final int PCI_CARD = 1;
 public static final int AGP_CARD = 2;

 private String manufacturer;

 private int type;

 public ComputerCard(String manufacturer, int type)
 {
 this.manufacturer = manufacturer;
 this.type = type;
 }

 ...
}

The traditional (default) way of persisting these classes would be to have a table to represent each
class. So our datastore will look like this

However we decide that we want to persist Computer objects into a table called COMPUTER and
we also want to persist the PC cards into the same table. We define our MetaData like this

120

<entity name="mydomain.Computer">
 <attributes>
 <basic name="operatingSystem">
 <column="OS_NAME"/>
 </basic>
 <embedded name="graphicsCard">
 <attribute-override name="manufacturer">
 <column="GRAPHICS_MANUFACTURER"/>
 </attribute-override>
 <attribute-override name="type">
 <column="GRAPHICS_TYPE"/>
 </attribute-override>
 </embedded>
 <embedded name="soundCard">
 <attribute-override name="manufacturer">
 <column="SOUND_MANUFACTURER"/>
 </attribute-override>
 <attribute-override name="type">
 <column="SOUND_TYPE"/>
 </attribute-override>
 </embedded>
 </attributes>
</entity>
<embeddable name="mydomain.ComputerCard">
 <attributes>
 <basic name="manufacturer"/>
 <basic name="type"/>
 </attributes>
</embeddable>

So here we will end up with a TABLE called "COMPUTER" with columns "COMPUTER_ID",
"OS_NAME", "GRAPHICS_MANUFACTURER", "GRAPHICS_TYPE", "SOUND_MANUFACTURER",
"SOUND_TYPE". If we call persist() on any objects of type Computer, they will be persisted into this
table.


You can represent inheritance of embedded objects using a discriminator (you
must define it in the metadata of the embedded type). This is a DataNucleus
extension since JPA doesn’t define any support for embedded inherited
persistable objects

121

Null embedded objects

DataNucleus supports persistence of null embedded objects using the following metadata

@Extension(key="null-indicator-column", value"MY_COL")
@Extension(key="null-indicator-value", value="SomeValue")

and these will be used when persisting and retrieving the embedded object.

See also :-

• MetaData reference for <embedded> element

• Annotations reference for @Embeddable

• Annotations reference for @Embedded

Embedding Nested Entities


Applicable to RDBMS, Excel, OOXML, ODF, HBase, MongoDB, Neo4j, Cassandra,
JSON

In the above example we had an embeddable entity within an entity. What if our embeddable
object also contain another embeddable entity? Using the above example, what if ComputerCard
contains an object of type Connector ?

@Embeddable
public class ComputerCard
{
 @Embedded
 Connector connector;

 public ComputerCard(String manufacturer, int type, Connector conn)
 {
 this.manufacturer = manufacturer;
 this.type = type;
 this.connector = conn;
 }

 ...
}

@Embeddable
public class Connector
{
 int type;
}

122

metadata_xml.html#embedded
annotations.html#Embeddable
annotations.html#Embedded

We want to store all of these objects into the same record in the COMPUTER table.

<entity name="mydomain.Computer">
 <attributes>
 <basic name="operatingSystem">
 <column="OS_NAME"/>
 </basic>
 <embedded name="graphicsCard">
 <attribute-override name="manufacturer">
 <column="GRAPHICS_MANUFACTURER"/>
 </attribute-override>
 <attribute-override name="type">
 <column="GRAPHICS_TYPE"/>
 </attribute-override>
 <attribute-override name="connector.type">
 <column="GRAPHICS_CONNECTOR_TYPE"/>
 </attribute-override>
 </embedded>
 <embedded name="soundCard">
 <attribute-override name="manufacturer">
 <column="SOUND_MANUFACTURER"/>
 </attribute-override>
 <attribute-override name="type">
 <column="SOUND_TYPE"/>
 </attribute-override>
 <attribute-override name="connector.type">
 <column="SOUND_CONNECTOR_TYPE"/>
 </attribute-override>
 </embedded>
 </attributes>
</entity>
<embeddable name="mydomain.ComputerCard">
 <attributes>
 <basic name="manufacturer"/>
 <basic name="type"/>
 </attributes>
</embeddable>
<embeddable name="mydomain.Connector">
 <attributes>
 <basic name="type"/>
 </attributes>
</embeddable>

So we simply nest the embedded definition of the Connector objects within the embedded
definition of the ComputerCard definitions for Computer. JPA supports this to as many levels as
you require! The Connector objects will be persisted into the GRAPHICS_CONNECTOR_TYPE, and
SOUND_CONNECTOR_TYPE columns in the COMPUTER table.

123

Embedding Collection Elements

 Applicable to RDBMS, MongoDB

In a typical 1-N relationship between 2 classes, the 2 classes in the relationship are persisted to their
own table, and either a join table or a foreign key is used to relate them. With JPA and DataNucleus
you have a variation on the join table relation where you can persist the objects of the "N" side into
the join table itself so that they don’t have their own identity, and aren’t stored in the table for that
class. This is supported in DataNucleus with the following provisos

• You can have inheritance in embedded keys/values and a discriminator is added (you must
define the discriminator in the metadata of the embedded type).

• When retrieving embedded elements, all fields are retrieved in one call. That is, fetch plans are
not utilised. This is because the embedded element has no identity so we have to retrieve all
initially.

It should be noted that where the collection "element" is not an entity or of a "reference" type
(Interface or Object) it will always be embedded, and this functionality here applies to embeddable
entity elements only. DataNucleus doesn’t support the embedding of "reference type" objects
currently.

Let’s take an example. We are modelling a Network, and in our simple model our Network has
collection of *Device*s. So we define our classes as

124

@Entity
public class Network
{
 private String name;

 @Embedded
 @ElementCollection
 private Collection<Device> devices = new HashSet<>();

 public Network(String name)
 {
 this.name = name;
 }

 ...
}

@Embeddable
public class Device
{
 private String name;

 private String ipAddress;

 public Device(String name, String addr)
 {
 this.name = name;
 this.ipAddress = addr;
 }

 ...
}

We decide that instead of Device having its own table, we want to persist them into the join table of
its relationship with the Network since they are only used by the network itself. We define our
MetaData like this

125

<entity name="mydomain.Network">
 <attributes>
 <basic name="name">
 <column="NAME" length="40"/>
 </basic>
 <element-collection name="devices">
 <collection-table name="NETWORK_DEVICES">
 <join-column name="NETWORK_ID"/>
 </collection-table>
 </element-collection>
 </attributes>
</entity>
<embeddable name="mydomain.Device">
 <attributes>
 <basic name="name">
 <column="DEVICE_NAME"/>
 </basic>
 <basic name="ipAddress">
 <column="DEVICE_IP_ADDR"/>
 </basic>
 </attributes>
</embeddable>

So here we will end up with a table called "NETWORK" with columns "NETWORK_ID", and "NAME",
and a table called "NETWORK_DEVICES" with columns "NETWORK_ID", "ADPT_PK_IDX",
"DEVICE_NAME", "DEVICE_IP_ADDR". When we persist a Network object, any devices are persisted
into the NETWORK_DEVICES table.

Note that if you want to override the name of the fields of the embedded element in the table of the
owner, you should use @AttributeOverride (when using annotations) or <attribute-override> (when
using XML).

See also :-

• MetaData reference for <embeddable> element

• MetaData reference for <embedded> element

• MetaData reference for <element-collection> element

• MetaData reference for <collection-table> element

• Annotations reference for @Embeddable

• Annotations reference for @Embedded

• Annotations reference for @ElementCollection

126

metadata_xml.html#embeddable
metadata_xml.html#embedded
metadata_xml.html#element-collection
metadata_xml.html#collection-table
annotations.html#Embeddable
annotations.html#Embedded
annotations.html#ElementCollection

Embedding Map Keys/Values

 Applicable to RDBMS, MongoDB

In a typical 1-N map relationship between classes, the classes in the relationship are persisted to
their own table, and a join table forms the map linkage. With JPA and DataNucleus you have a
variation on the join table relation where you can persist either the key class or the value class, or
both key class and value class into the join table. This is supported in DataNucleus with the
following provisos

• You can have inheritance in embedded keys/values and a discriminator is added (you must
define the discriminator in the metadata of the embedded type).

• When retrieving embedded keys/values, all fields are retrieved in one call. That is, entity graphs
and fetch specifications are not utilised. This is because the embedded key/value has no identity
so we have to retrieve all initially.

It should be noted that where the map "key"/"value" is not persistable or of a "reference" type
(Interface or Object) it will always be embedded, and this functionality here applies to persistable
keys/values only.

 DataNucleus doesn’t support embedding reference type elements currently.

Let’s take an example. We are modelling a FilmLibrary, and in our simple model our FilmLibrary
has map of *Film*s, keyed by a String alias. So we define our classes as

127

@Entity
public class FilmLibrary
{
 private String owner;

 @Embedded
 @ElementCollection
 @CollectionTable(name="FILM_LIBRARY_FILMS")
 @MapKeyColumn(name="FILM_ALIAS")
 private Map<String, Film> films = new HashMap<>();

 public FilmLibrary(String owner)
 {
 this.owner = owner;
 }

 ...
}

public class Film
{
 @Column(name="FILM_NAME")
 private String name;

 @Column(name="FILM_DIRECTOR")
 private String director;

 public Film(String name, String director)
 {
 this.name = name;
 this.director = director;
 }

 ...
}

So here we will end up with a table called "FILM_LIBRARY" with columns "FILM_LIBRARY_ID", and
"OWNER", and a table called "FILM_LIBRARY_FILMS" with columns "FILM_LIBRARY_ID",
"FILM_ALIAS", "FILM_NAME", "FILM_DIRECTOR". When we persist a FilmLibrary object, any films
are persisted into the FILM_LIBRARY_FILMS table.

Note that if you want to override the name of the fields of the embedded key/value in the table of
the owner, you should use @AttributeOverride (when using annotations) or <attribute-override>

128

(when using XML). In the case of fields of an embedded key you should set the name as
"key.{fieldName}" and in the case of fields of an embedded value you should set the name as
"value.{fieldName}".

129

Serialised Fields
JPA provides a way for users to specify that a field will be persisted serialised. This is of use, for
example, to collections/maps/arrays which typically are stored using join tables or foreign-keys to
other records. By specifying that a field is serialised a column will be added to store that field and
the field will be serialised into it.

JPA’s definition of serialising applies to any field and all in the same way, unlike the situation with
JDO which provides much more flexibility. Perhaps the most important thing to bear in mind when
deciding to serialise a field is that that object in the field being serialised must implement
java.io.Serializable.

Serialised Fields

 Applicable to RDBMS, HBase, MongoDB

If you wish to serialise a particular field into a single column (in the table of the class), you need to
simply mark the field as a "lob" (large object). Let’s take an example. We have the following classes

public class Farm
{
 Collection<Animal> animals;

 ...
}

public class Animal
{
 ...
}

and we want the animals collection to be serialised into a single column in the table storing the
Farm class, so we define our MetaData like this

@Entity
public class Farm
{
 @Lob
 Collection<Animal> animals;

 ...
}

or using XML metadata

130

<entity class="Farm">
 <table name="FARM"/>
 <attributes>
 ...
 <basic name="animals">
 <column name="ANIMALS"/>
 <lob/>
 </basic>
 ...
 </attributes>
</entity>

So we make use of the lob element / @Lob annotation. This specification results in a table like this

 Queries cannot be performed on collections stored as serialised.


If the field that we want to serialise is of type String, byte array, char array, Byte
array or Character array then the field will be serialised into a CLOB column
rather than BLOB.

See also :-

• MetaData reference for <basic> element

• Annotations reference for @Lob

Serialise to File

 Applicable to RDBMS

Note this is not part of the JPA spec, but is available in DataNucleus to ease your usage. If you
have a non-relation field that implements Serializable you have the option of serialising it into a file
on the local disk. This could be useful where you have a large file and don’t want to persist very
large objects into your RDBMS. Obviously this will mean that the field is no longer queryable, but
then if its a large file you likely don’t care about that. So let’s give an example

131

metadata_xml.html#basic
annotations.html#Lob

@Entity
public class Person
{
 @Id
 long id;

 @Basic
 @Lob
 @Extension(vendorName="datanucleus", key="serializeToFileLocation", value
="person_avatars")
 AvatarImage image;
}

or using XML metadata

<entity class="Person">
 <attributes>
 ...
 <basic name="image">
 <lob/>
 <extension key="serializeToFileLocation" value="person_avatars"
 </basic>
 ...
 </attributes>
</entity>

So this will now persist a file into a folder /person_avatars_ with filename as the String form of the
identity of the owning object. In a real world example you likely will specify the extension value as
an absolute path name, so you can place it anywhere in the local disk.

132

Schema
We have shown earlier how you define a classes basic persistence, notating which fields are
persisted. The next step is to define how it maps to the datastore. Fields of a class are mapped to
columns of a table (note that with some datastores it is not called a 'table' or 'column', but the
concept is similar and we use 'table' and 'column' here to represent the mapping). If you don’t
specify the table and column names, then DataNucleus will generate table and column names for
you, according to the JPA specs rules.


You should specify your table and column names if you have an existing schema.
Failure to do so will mean that DataNucleus uses its own names and these will
almost certainly not match what you have in the datastore.

There are several aspects to cover here

• Table and column names

• Column nullability and default value

• Column Types

• Position of a column in a table

• RDBMS : Mapping a class to an RDBMS View

• RDBMS : Supported types for a field

Tables and Column names
The main thing that developers want to do when they set up the persistence of their data is to
control the names of the tables and columns used for storing the classes and fields. This is an
essential step when mapping to an existing schema, because it is necessary to map the classes onto
the existing database entities. Let’s take an example

public class Hotel
{
 private String name;
 private String address;
 private String telephoneNumber;
 private int numberOfRooms;
 ...
}

In our case we want to map this class to a table called ESTABLISHMENT, and has columns NAME,
DIRECTION, PHONE and NUMBER_OF_ROOMS (amongst other things). So we define our Meta-Data
like this

133

#classes
#datastore_identifiers
#schema_names
#schema_nulls_defaults
#schema_column_types
#schema_column_position
#schema_rdbms_views
#schema_rdbms_types

<entity class="Hotel">
 <table name="ESTABLISHMENT"/>
 <attributes>
 <basic name="name">
 <column name="NAME"/>
 </basic>
 <basic name="address">
 <column name="DIRECTION"/>
 </basic>
 <basic name="telephoneNumber">
 <column name="PHONE"/>
 </basic>
 <basic name="numberOfRooms">
 <column name="NUMBER_OF_ROOMS"/>
 </basic>
 </attributes>
</entity>

Alternatively, if you really want to embody schema info in your class, you can use annotations

@Table(name="ESTABLISHMENT")
public class Hotel
{
 @Column(name="NAME")
 private String name;
 @Column(name="DIRECTION")
 private String address;
 @Column(name="PHONE")
 private String telephoneNumber;
 @Column(name="NUMBER_OF_ROOMS")
 private int numberOfRooms;

 ...
}

So we have defined the table and the column names. It should be mentioned that if you don’t
specify the table and column names then DataNucleus will generate names for the datastore
identifiers consistent with the JPA specification. The table name will be based on the class name,
and the column names will be based on the field names and the role of the field (if part of a
relationship).

See also :-

• Identifier Guide - defining the identifiers to use for table/column names

• MetaData reference for <column> element

134

#datastore_identifiers
metadata_xml.html#column

Column nullability and default values
So we’ve seen how to specify the basic structure of a table, naming the table and its columns, and
how to control the types of the columns. We can extend this further to control whether the columns
are allowed to contain nulls. Let’s take a related class for our hotel. Here we have a class to model
the payments made to the hotel.

public class Payment
{
 Customer customer;
 String bankTransferReference;
 String currency;
 double amount;
}

In this class we can model payments from a customer of an amount. Where the customer pays by
bank transfer we can save the reference number. Since the bank transfer reference is optional we
want that column to be nullable. So let’s specify the MetaData for the class.

<entity class="Payment">
 <attributes>
 <one-to-one name="customer">
 <primary-key-join-column name="CUSTOMER_ID"/>
 </one-to-one>
 <basic name="bankTransferReference">
 <column name="TRANSFER_REF" nullable="true"/>
 </basic>
 <basic name="currency">
 <column name="CURRENCY" default-value="GBP"/>
 </basic>
 <basic name="amount">
 <column name="AMOUNT"/>
 </basic>
 </attributes>
</entity>

Alternatively, you can specify these using annotations should you so wish.

So we make use of the nullable attribute. The table, when created by DataNucleus, will then provide
the nullability that we require. Unfortunately with JPA there is no way to specify a default value for
a field when it hasn’t been set (unlike JDO where you can do that).

See also :-

• MetaData reference for <column> element

135

metadata_xml.html#column

Column types
DataNucleus will provide a default type for any columns that it creates, but it will allow users to
override this default. The default that DataNucleus chooses is always based on the Java type for the
field being mapped. For example a Java field of type "int" will be mapped to a column type of
INTEGER in RDBMS datastores. Similarly String will be mapped to VARCHAR.

JPA provides 2 ways of influencing the column DDL generated.

• You can specify the columnDefinition of @Column/<column> but you have to provide the
complete DDL for that column (without the column name), and hence can lose database
independence by using this route. e.g "VARCHAR(255)"

• Use @Column/<column> attributes and specify the length/precision/scale of the column, as well
as whether it is unique etc. It will make use of the Java type to come up with a default datastore
type for the column. Sadly JPA doesn’t allow specification of the precise datastore type (except
for BLOB/CLOB/TIME/TIMESTAMP cases). DataNucleus provides an extension to overcome this
gap in the JPA spec. Here we make use of a DataNucleus extension annotation @JdbcType or
"jdbc-type" extension attribute for <column>. Like this

<entity name="Payment">
 <attributes>
 <one-to-one name="customer">
 <primary-key-join-column name="CUSTOMER_ID"/>
 </one-to-one>
 <basic name="bankTransferReference">
 <column name="TRANSFER_REF" nullable="true" length="255"/>
 </basic>
 <basic name="currency">
 <column name="CURRENCY" default-value="GBP" length="3" jdbc-type="CHAR"/>
 </basic>
 <basic name="amount">
 <column name="AMOUNT" precision="10" scale="2"/>
 </basic>
 </attributes>
</entity>

You could alternatively specify these using annotations should you so wish. So we have defined
TRANSFER_REF to use VARCHAR(255) column type, CURRENCY to use (VAR)CHAR(3) column type,
and AMOUNT to use DECIMAL(10,2) column type.

See also :-

• Types Guide - defining mapping of Java types

• RDBMS Types Guide - defining mapping of Java types to JDBC/SQL types

• MetaData reference for <column> element

136

#field_types
#schema_rdbms_types
metadata_xml.html#column

Column Position
With some datastores it is desirable to be able to specify the relative position of a column in the
table schema. The default (for DataNucleus) is just to put them in ascending alphabetical order.
DataNucleus allows an extension to JPA providing definition of this using the position of a column.
See fields/properties positioning docs for details.

RDBMS : Views

The standard situation with an RDBMS datastore is to map classes to Tables. The majority of
RDBMS also provide support for Views, providing the equivalent of a read-only SELECT across
various tables. DataNucleus also provides support for querying such Views. This provides more
flexibility to the user where they have data and need to display it in their application. Support for
Views is described below.

When you want to access data according to a View, you are required to provide a class that will
accept the values from the View when queried, and Meta-Data for the class that defines the View
and how it maps onto the provided class. Let’s take an example. We have a View
SALEABLE_PRODUCT in our database as follows, defined based on data in a PRODUCT table.

CREATE VIEW SALEABLE_PRODUCT (ID, NAME, PRICE, CURRENCY) AS
 SELECT ID, NAME, CURRENT_PRICE AS PRICE, CURRENCY FROM PRODUCT
 WHERE PRODUCT.STATUS_ID = 1

So we define a class to receive the values from this View, and define how it is mapped to the view.

137

#member_position

package mydomain.views;

@Entity
@Table("SALEABLE_PRODUCT")
@Extension(vendorName="datanucleus", key="view-definition", value="CREATE VIEW
SALEABLE_PRODUCT
(
 {this.id},
 {this.name},
 {this.price},
 {this.currency}
) AS
SELECT ID, NAME, CURRENT_PRICE AS PRICE, CURRENCY FROM PRODUCT
WHERE PRODUCT.STATUS_ID = 1")
public class SaleableProduct
{
 String id;
 String name;
 double price;
 String currency;

 public String getId()
 {
 return id;
 }

 public String getName()
 {
 return name;
 }

 public double getPrice()
 {
 return price;
 }

 public String getCurrency()
 {
 return currency;
 }
}

Please note the following

• We’ve defined our class as using "nondurable" identity (@NonDurableId). This was mandatory in
all versions up to 5.0.7 but after that is optional and you can use application/datastore identity
also.

• We’ve specified the "table", which in this case is the view name - otherwise DataNucleus would
create a name for the view based on the class name.

138

• We’ve defined a DataNucleus extension view-definition that defines the view for this class. If the
view doesn’t already exist it doesn’t matter since DataNucleus (when used with
autoCreateSchema) will execute this construction definition.

• The view-definition can contain macros utilising the names of the fields in the class, and hence
borrowing their column names (if we had defined column names for the fields of the class).

• You can also utilise other classes in the macros, and include them via a DataNucleus MetaData
extension view-imports (not shown here)

• If your View already exists you are still required to provide a view-definition even though
DataNucleus will not be utilising it, since it also uses this attribute as the flag for whether it is a
View or a Table - just make sure that you specify the "table" also in the MetaData.

• If you have a relation to the class represented by a View, you cannot expect it to create an FK in
the View. The View will map on to exactly the members defined in the class it represents. i.e
cannot have a 1-N FK uni relation to the class with the View.

We can now utilise this class within normal DataNucleus JPA querying operation.

Query<MyViewClass> q = em.createQuery("SELECT p FROM SaleableProduct p",
SaleableProduct.class);
List<MyViewClass> results = q.getResultList();

Hopefully that has given enough detail on how to create and access views from with a DataNucleus-
enabled application.

RDBMS : Datastore Types
As we saw in the Types Guide DataNucleus supports the persistence of a large range of Java field
types. With RDBMS datastores, we have the notion of tables/columns in the datastore and so each
Java type is mapped across to a column or a set of columns in a table. It is important to understand
this mapping when mapping to an existing schema for example. In RDBMS datastores a java type is
stored using JDBC types. DataNucleus supports the use of the vast majority of the available JDBC
types.

When persisting a Java type in general it is persisted into a single column. For example a String will
be persisted into a VARCHAR column by default. Some types (e.g Color) have more information to
store than we can conveniently persist into a single column and so use multiple columns. Other
types (e.g Collection) store their information in other ways, such as foreign keys.

This table shows the Java types we saw earlier and whether they can be queried using JPQL
queries, and what JDBC types can be used to store them in your RDBMS datastore. Not all RDBMS
datastores support all of these options. While DataNucleus always tries to provide a complete list
sometimes this is impossible due to limitations in the underlying JDBC driver

139

#field_types

Java Type Numb
er of
Colum
ns

Query
able

JDBC Type(s)

boolean 1  BIT, CHAR ('Y','N'), BOOLEAN, TINYINT,
SMALLINT, NUMERIC

byte 1  TINYINT, SMALLINT, NUMERIC

char 1  CHAR, INTEGER, NUMERIC

double 1  DOUBLE, DECIMAL, FLOAT

float 1  FLOAT, REAL, DOUBLE, DECIMAL

int 1  INTEGER, BIGINT, NUMERIC

long 1  BIGINT, NUMERIC, DOUBLE, DECIMAL,
INTEGER

short 1  SMALLINT, INTEGER, NUMERIC

boolean[] 1  [5] LONGVARBINARY, BLOB

byte[] 1  [5] LONGVARBINARY, BLOB

char[] 1  [5] LONGVARBINARY, BLOB

double[] 1  [5] LONGVARBINARY, BLOB

float[] 1  [5] LONGVARBINARY, BLOB

int[] 1  [5] LONGVARBINARY, BLOB

long[] 1  [5] LONGVARBINARY, BLOB

short[] 1  [5] LONGVARBINARY, BLOB

java.lang.Boolean 1  BIT, CHAR('Y','N'), BOOLEAN, TINYINT,
SMALLINT

java.lang.Byte 1  TINYINT, SMALLINT, NUMERIC

java.lang.Character 1  CHAR, INTEGER, NUMERIC

java.lang.Double 1  DOUBLE, DECIMAL, FLOAT

java.lang.Float 1  FLOAT, REAL, DOUBLE, DECIMAL

java.lang.Integer 1  INTEGER, BIGINT, NUMERIC

java.lang.Long 1  BIGINT, NUMERIC, DOUBLE, DECIMAL,
INTEGER

java.lang.Short 1  SMALLINT, INTEGER, NUMERIC

java.lang.Boolean[] 1  [5] LONGVARBINARY, BLOB

java.lang.Byte[] 1  [5] LONGVARBINARY, BLOB

java.lang.Character[] 1  [5] LONGVARBINARY, BLOB

140

Java Type Numb
er of
Colum
ns

Query
able

JDBC Type(s)

java.lang.Double[] 1  [5] LONGVARBINARY, BLOB

java.lang.Float[] 1  [5] LONGVARBINARY, BLOB

java.lang.Integer[] 1  [5] LONGVARBINARY, BLOB

java.lang.Long[] 1  [5] LONGVARBINARY, BLOB

java.lang.Short[] 1  [5] LONGVARBINARY, BLOB

java.lang.Number 1 

java.lang.Object 1 LONGVARBINARY, BLOB

java.lang.String [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [6], UNIQUEIDENTIFIER [7],
XMLTYPE [9]

java.lang.StringBuffer [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [6], UNIQUEIDENTIFIER [7],
XMLTYPE [9]

java.lang.String[] 1  [5] LONGVARBINARY, BLOB

java.lang.Enum 1  LONGVARBINARY, BLOB, VARCHAR, INTEGER

java.lang.Enum[] 1  [5] LONGVARBINARY, BLOB

java.math.BigDecimal 1  DECIMAL, NUMERIC

java.math.BigInteger 1  NUMERIC, DECIMAL

java.math.BigDecimal[] 1  [5] LONGVARBINARY, BLOB

java.math.BigInteger[] 1  [5] LONGVARBINARY, BLOB

java.sql.Date 1  DATE, TIMESTAMP

java.sql.Time 1  TIME, TIMESTAMP

java.sql.Timestamp 1  TIMESTAMP

java.util.ArrayList 0 

java.util.BitSet 0  LONGVARBINARY, BLOB

java.util.Calendar [3] 1 or 2  INTEGER, VARCHAR, CHAR

java.util.Collection 0 

java.util.Currency 1  VARCHAR, CHAR

java.util.Date 1  TIMESTAMP, DATE, CHAR, BIGINT

java.util.Date[] 1  [5] LONGVARBINARY, BLOB

java.util.GregorianCalendar [2] 1 or 2  INTEGER, VARCHAR, CHAR

141

Java Type Numb
er of
Colum
ns

Query
able

JDBC Type(s)

java.util.HashMap 0 

java.util.HashSet 0 

java.util.Hashtable 0 

java.util.LinkedHashMap 0 

java.util.LinkedHashSet 0 

java.util.LinkedList 0 

java.util.List 0 

java.util.Locale [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [6], UNIQUEIDENTIFIER [7],
XMLTYPE [9]

java.util.Locale[] 1  [5] LONGVARBINARY, BLOB

java.util.Map 0 

java.util.Properties 0 

java.util.PriorityQueue 0 

java.util.Queue 0 

java.util.Set 0 

java.util.SortedMap 0 

java.util.SortedSet 0 

java.util.Stack 0 

java.util.TimeZone [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [7], UNIQUEIDENTIFIER [8],
XMLTYPE [9]

java.util.TreeMap 0 

java.util.TreeSet 0 

java.util.UUID [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [7], UNIQUEIDENTIFIER [8],
XMLTYPE [9]

java.util.Vector 0 

java.awt.Color [1] 4  INTEGER

java.awt.Point [2] 2  INTEGER

java.awt.image.BufferedImage
[4]

1  LONGVARBINARY, BLOB

142

Java Type Numb
er of
Colum
ns

Query
able

JDBC Type(s)

java.net.URI [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [7], UNIQUEIDENTIFIER [8],
XMLTYPE [9]

java.net.URL [8] 1  VARCHAR, CHAR, LONGVARCHAR, CLOB, BLOB,
DATALINK [7], UNIQUEIDENTIFIER [8],
XMLTYPE [9]

java.io.Serializable 1  LONGVARBINARY, BLOB

Entity 1  [embedded]

Entity[] 1  [5]

• [1] - java.awt.Color - stored in 4 columns (red, green, blue, alpha). ColorSpace is not persisted.

• [2] - java.awt.Point - stored in 2 columns (x and y).

• [3] - java.util.Calendar - stored in 2 columns (milliseconds and timezone).

• [4] - java.awt.image.BufferedImage is stored using JPG image format

• [5] - Array types are queryable if not serialised, but stored to many rows

• [6] - DATALINK JDBC type supported on DB2 only. Uses the SQL function
DLURLCOMPLETEONLY to fetch from the datastore. You can override this using the select-
function extension. See the MetaData reference.

• [7] - UNIQUEIDENTIFIER JDBC type supported on MSSQL only.

• [8] - Oracle treats an empty string as the same as NULL. To workaround this limitation
DataNucleus replaces the empty string with the character \u0001.

• [9] - XMLTYPE JDBC type supported on Oracle only.

 If you need to extend the provided DataNucleus capabilities in terms of its datastore types
support you can utilise a plugin point.

DataNucleus provides support for the majority of the JDBC types with RDBMS. The support is shown
below.

JDBC Type Supported Restrictions

ARRAY  Only for PostgreSQL array type

BIGINT 

BINARY  Only for geospatial types on MySQL

BIT 

BLOB 

BOOLEAN 

143

metadata_xml.html#field_select_function
../extensions/extensions.html#rdbms_datastore_mapping

JDBC Type Supported Restrictions

CHAR 

CLOB 

DATALINK  Only on DB2

DATE 

DECIMAL 

DISTINCT 

DOUBLE 

FLOAT 

INTEGER 

JAVA_OBJECT 

LONGVARBINARY 

LONGVARCHAR 

NCHAR 

NULL 

NUMERIC 

NVARCHAR 

OTHER 

REAL 

REF 

SMALLINT 

STRUCT  Only for geospatial types on Oracle

TIME 

TIMESTAMP 

TINYINT 

VARBINARY 

VARCHAR 

Secondary Tables

 Applicable to RDBMS

The standard JPA persistence strategy is to persist an object of a class into its own table. In some
situations you may wish to map the class to a primary table as well as one or more secondary

144

tables. For example when you have a Java class that could have been split up into 2 separate classes
yet, for whatever reason, has been written as a single class, however you have a legacy datastore
and you need to map objects of this class into 2 tables. JPA allows persistence of fields of a class into
secondary tables.

The process for managing this situation is best demonstrated with an example. Let’s suppose we
have a class that represents a Printer. The Printer class contains within it various attributes of the
toner cartridge. So we have

package com.mydomain.samples.secondarytable;

public class Printer
{
 long id;
 String make;
 String model;

 String tonerModel;
 int tonerLifetime;

}

Now we have a database schema that has 2 tables (PRINTER and PRINTER_TONER) in which to
store objects of this class. So we need to tell DataNucleus to perform this mapping. So we define the
MetaData for the Printer class like this

@Entity
@Table(name="PRINTER")
@SecondaryTable(name="PRINTER_TONER", pkJoinColumns=@PrimaryKeyJoinColumn(name
="PRINTER_REFID"))
public class Printer
{
 ...

 @Column(name="MODEL", table="PRINTER_TONER")
 String tonerModel;

 @Column(name="LIFETIME", table="PRINTER_TONER")
 int tonerLifetime;
}

or using XML metadata

145

<entity class="Printer">
 <table name="PRINTER"/>
 <secondary-table name="PRINTER_TONER">
 <primary-key-join-column name="PRINTER_REFID"/>
 </secondary-table>

 <attributes>
 ...
 <basic name="tonerModel">
 <column name="MODEL" table="PRINTER_TONER"/>
 </basic>
 <basic name="tonerLifetime">
 <column name="LIFETIME" table="PRINTER_TONER"/>
 </basic>
 </attributes>
</entity>

Here we have defined that objects of the Printer class will be stored in the primary table PRINTER.
In addition we have defined that some fields are stored in the table PRINTER_TONER.

• We declare the "secondary-table"(s) that we will be using at the start of the definition.

• We define tonerModel and tonerLifetime to use columns in the table PRINTER_TONER. This uses
the "table" attribute of <column>

• Whilst defining the secondary table(s) we will be using, we also define the join column to be
called "PRINTER_REFID".

This results in the following database tables :-

So we now have our primary and secondary database tables. The primary key of the
PRINTER_TONER table serves as a foreign key to the primary class. Whenever we persist a Printer
object a row will be inserted into both of these tables.

See also :-

• MetaData reference for <secondary-table> element

• MetaData reference for <column> element

• Annotations reference for @SecondaryTable

• Annotations reference for @Column

146

metadata_xml.html#secondary-table
metadata_xml.html#column
annotations.html#SecondaryTable
annotations.html#Column

Constraints
A datastore often provides ways of constraining the storage of data to maintain relationships and
improve performance. These are known as constraints and they come in various forms. These are :-

• Indexes - these are used to mark fields that are referenced often as indexes so that when they
are used the performance is optimised.

• Unique constraints - these are placed on fields that should have a unique value. That is, only one
object will have a particular value.

• Foreign-Keys - these are used to interrelate objects, and allow the datastore to keep the integrity
of the data in the datastore.

• Primary-Keys - allow the PK to be set, and also to have a name.

Indexes

 Applicable to RDBMS, NeoDatis, MongoDB

Many datastores provide the ability to have indexes defined to give performance benefits. With
RDBMS the indexes are specified on the table and the indexes to the rows are stored separately. In
the same way an ODBMS typically allows indexes to be specified on the fields of the class, and these
are managed by the datastore. JPA 2.1 allows you to define the indexes on a table-by-table basis by
metadata as in the following example (note that you cannot specify indexes on a field basis like in
JDO)

import javax.persistence.Index;

@Entity
@Table(indexes={@Index(name="SOME_VAL_IDX", columnList="SOME_VALUE")})
public class MyClass
{
 @Column(name="SOME_VALUE")
 long someValue;

 ...
}

The JPA @Index annotation is only applicable at a class level. DataNucleus provides its own @Index
annotation that you can specify on a field/method to signify that the column(s) for this field/method
will be indexed. Like this

147

#index
#unique
#fk
#pk

@Entity
public class MyClass
{
 @org.datanucleus.api.jpa.annotations.Index(name="VAL_IDX")
 long someValue;

 ...
}

Unique constraints

 Applicable to RDBMS, NeoDatis, MongoDB

Some datastores provide the ability to have unique constraints defined on tables to give extra
control over data integrity. JPA provides a mechanism for defining such unique constraints. Let’s
take an example class, and show how to specify this

public class Person
{
 String forename;
 String surname;
 String nickname;
 ...
}

and here we want to impose uniqueness on the "nickname" field, so there is only one Person known
as "DataNucleus Guru" for example !

<entity class="Person">
 <table name="PEOPLE"/>
 <attributes>
 ...
 <basic name="nickname">
 <column name="SURNAME" unique="true"/>
 </basic>
 ...
 </attributes>
</entity>

The second use of unique constraints is where we want to impose uniqueness across composite
columns. So we reuse the class above, and this time we want to impose a constraint that there is
only one Person with a particular "forename+surname".

148

<entity class="Person">
 <table name="PEOPLE">
 <unique-constraint>
 <column-name>FORENAME</column-name>
 <column-name>SURNAME</column-name>
 </unique-constraint>
 </table>
 <attributes>
 ...
 <basic name="forename">
 <column name="FORENAME"/>
 </basic>
 <basic name="surname">
 <column name="SURNAME"/>
 </basic>
 ...
 </attributes>
</entity>

In the same way we can also impose unique constraints on <join-table> and <secondary-table>

See also :-

• MetaData reference for <column> element

• MetaData reference for <unique-constraint> element

• Annotations reference for @Column

• Annotations reference for @UniqueConstraint

Foreign Keys

 Applicable to RDBMS

When objects have relationships with one object containing, for example, a Collection of another
object, it is common to store a foreign key in the datastore representation to link the two associated
tables. Moreover, it is common to define behaviour about what happens to the dependent object
when the owning object is deleted. Should the deletion of the owner cause the deletion of the
dependent object maybe ? JPA 2.1 adds support for defining the foreign key for relation fields as per
the following example

149

metadata_xml.html#column
metadata_xml.html#unique-constraint
annotations.html#Column
annotations.html#UniqueConstraint

public class MyClass
{
 ...

 @OneToOne
 @JoinColumn(name="OTHER_ID", foreignKey=@ForeignKey(name="OTHER_FK",
 foreignKeyDefinition="FOREIGN KEY (OTHER_ID) REFERENCES MY_OTHER_TBL
(MY_OTHER_ID)]"))
 MyOtherClass other;

}

Note that when you don’t specify any foreign key the JPA provider is free to add the foreign keys
that it considers are necessary.

Primary Keys

 Applicable to RDBMS

In RDBMS datastores, it is accepted as good practice to have a primary key on all tables. You specify
in other parts of the MetaData which fields are part of the primary key (if using application
identity). Unfortunately JPA doesnt allow specification of the name of the primary key constraint,
nor of whether join tables are given a primary key constraint at all.

Datastore Identifiers
A datastore identifier is a simple name of a database object, such as a column, table, index, or view,
and is composed of a sequence of letters, digits, and underscores (_) that represents it’s name.
DataNucleus allows users to specify the names of tables, columns, indexes etc but if the user doesn’t
specify these DataNucleus will generate names.

With RDBMS the generation of identifier names is controlled by an IdentifierFactory, and
DataNucleus provides a default implementation for JPA. You can provide your own RDBMS
IdentifierFactory plugin to give your own preferred naming if so desired. For RDBMS you set the
RDBMS IdentifierFactory by setting the persistence property datanucleus.identifierFactory. Set it to
the symbolic name of the factory you want to use.

• jpa RDBMS IdentifierFactory (default for JPA persistence for RDBMS)

With non-RDBMS the generation of identifier names is controlled by a NamingFactory and again a
default implementation for JPA. You can provide your own NamingFactory plugin to give your own
preferred naming if so desired. You set the NamingFactory by setting the persistence property
datanucleus.identifier.namingFactory to give your own preferred naming if so desired. Set it to the
symbolic name of the factory you want to use.

• jpa NamingFactory (default for JPA persistence for non-RDBMS)

In describing the different possible naming conventions available out of the box with DataNucleus

150

../extensions/extensions.html#rdbms_identifierfactory
../extensions/extensions.html#rdbms_identifierfactory
#rdbms_jpa
../extensions/extensions.html#identifier_namingfactory
#jpa

we’ll use the following example

public class MyClass
{
 String myField1;
 Collection<MyElement> elements1; // Using join table
 Collection<MyElement> elements2; // Using foreign-key
}

class MyElement
{
 String myElementField;
 MyClass myClass2;
}

NamingFactory 'jpa'

The NamingFactory "jpa" aims at providing a naming policy consistent with the "JPA" specification.

Using the same example above, the rules in this NamingFactory mean that, assuming that the user
doesn’t specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS

• When using datastore identity MYCLASS will have a column called MYCLASS_ID

• MyClass.myField1 will be persisted into a column called MYFIELD1

• MyElement will be persisted into a table named MYELEMENT

• MyClass.elements1 will be persisted into a join table called MYCLASS_MYELEMENT

• MYCLASS_ELEMENTS1 will have columns called MYCLASS_MYCLASS_ID (FK to owner table)
and ELEMENTS1_ELEMENT_ID (FK to element table)

• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID (FK to owner)
table

• Any discriminator column will be called DTYPE

• Any index column in a List for field MyClass.myField1 will be called MYFIELD1_ORDER

• Any adapter column added to a join table to form part of the primary key will be called IDX

• Any version column for a table will be called VERSION

RDBMS IdentifierFactory 'jpa'

The RDBMS IdentifierFactory "jpa" aims at providing a naming policy consistent with the JPA
specification.

Using the same example above, the rules in this IdentifierFactory mean that, assuming that the user
doesnt specify any <column> elements :-

• MyClass will be persisted into a table named MYCLASS

151

• When using datastore identity MYCLASS will have a column called MYCLASS_ID

• MyClass.myField1 will be persisted into a column called MYFIELD1

• MyElement will be persisted into a table named MYELEMENT

• MyClass.elements1 will be persisted into a join table called MYCLASS_MYELEMENT

• MYCLASS_ELEMENTS1 will have columns called MYCLASS_MYCLASS_ID (FK to owner table)
and ELEMENTS1_ELEMENT_ID (FK to element table)

• MyClass.elements2 will be persisted into a column ELEMENTS2_MYCLASS_ID (FK to owner)
table

• Any discriminator column will be called DTYPE

• Any index column in a List for field MyClass.myField1 will be called MYFIELD1_ORDER

• Any adapter column added to a join table to form part of the primary key will be called IDX

• Any version column for a table will be called VERSION

Controlling the Case

The underlying datastore will define what case of identifiers are accepted. By default, DataNucleus
will capitalise names (assuming that the datastore supports it). You can however influence the case
used for identifiers. This is specifiable with the persistence property datanucleus.identifier.case,
having the following values

• UpperCase: identifiers are in upper case

• LowerCase: identifiers are in lower case

• MixedCase: No case changes are made to the name of the identifier provided by the user (class
name or metadata).

NOTE : Some datastores only support UPPERCASE or lowercase identifiers and so setting this
parameter may have no effect if your database doesn’t support that option.

NOTE : This case control only applies to DataNucleus-generated identifiers. If you provide your own
identifiers for things like schema/catalog etc then you need to specify those using the case you wish
to use in the datastore (including quoting as necessary)

152

	JPA Mapping Guide (v5.0)
	Table of Contents
	Classes
	Entity Class
	MappedSuperclass
	Embeddable Class
	Persistence Aware Class
	Read-Only Class

	Inheritance
	Discriminator
	Strategy : SINGLE_TABLE
	Strategy : JOINED
	Strategy : TABLE_PER_CLASS
	Mapped Superclasses

	Auditing
	Fields/Properties
	Persistent Fields
	Persistent Properties
	Making a field/property non-persistent
	Field/Property Positioning
	Making a field/property read-only

	Field Types
	Primitive and java.lang Types
	java.math types
	Temporal Types (java.util, java.sql. java.time, Jodatime)
	Collection/Map types
	Enums
	Geospatial Types
	Other Types
	Arrays
	Generic Type Variables
	JPA Attribute Converters
	Types extending Collection/Map

	Identity
	Application Identity
	Datastore Identity
	Nondurable Identity
	Derived Identity Relationships

	Versioning
	Version Field/Property
	Surrogate Version for Class

	Value Generation
	ValueGeneration Strategy AUTO
	ValueGeneration Strategy SEQUENCE
	ValueGeneration Strategy IDENTITY
	ValueGeneration Strategy TABLE
	ValueGeneration Strategy "Custom"

	1-1 Relations
	Unidirectional
	Bidirectional

	1-N Relations
	equals() and hashCode()
	Collection<Entity> Unidirectional JoinTable
	Collection<Entity> Unidirectional FK
	Collection<Entity> Bidirectional JoinTable
	Collection<Entity> Bidirectional FK
	Using a List
	Collection<Simple> via JoinTable
	Collection<Simple> using AttributeConverter via column
	Collection<Entity> via Shared JoinTable
	Collection<Entity> via Shared FK
	Map<Simple, Entity> via JoinTable
	Map<Simple, Simple> via JoinTable
	Map<Simple, Simple> using AttributeConverter via column
	Map<Entity, Entity> via JoinTable
	Map<Entity, Simple> via JoinTable
	Map<Simple,Entity> Unidirectional FK (key stored in value)
	Map<Simple,Entity> Bidirectional FK (key stored in value)

	N-1 Relations
	Unidirectional with ForeignKey
	Unidirectional with JoinTable
	Bidirectional

	M-N Relations
	equals() and hashCode()
	Using Set
	Using Ordered Lists

	Arrays
	Single Column Arrays (serialised)
	Simple array stored in join table
	Entity array persisted into Join Tables
	Entity array persisted using Foreign-Keys

	Interfaces
	1-1 Interface Relation
	1-N Interface Relation
	Dynamic Schema Updates (RDBMS)

	java.lang.Object
	1-1/N-1 Object Relation
	1-N Object Relation
	Serialised Objects

	Embedded Fields
	Embedding entities (1-1)
	Embedding Nested Entities
	Embedding Collection Elements
	Embedding Map Keys/Values

	Serialised Fields
	Serialised Fields
	Serialise to File

	Schema
	Tables and Column names
	Column nullability and default values
	Column types
	Column Position
	RDBMS : Views
	RDBMS : Datastore Types
	Secondary Tables
	Constraints
	Datastore Identifiers

