
JPA Persistence Guide (v5.1)

Table of Contents
EntityManagerFactory . 2

Create an EMF in JavaSE . 2

Create an EMF in JavaEE . 2

Persistence Unit . 3

EntityManagerFactory Properties . 6

Closing EntityManagerFactory . 26

Level 2 Cache . 26

Datastore Schema . 33

Schema Generation for persistence-unit . 33

Schema Auto-Generation at runtime . 34

Schema Generation : Validation . 34

Schema Generation : Naming Issues. 35

Schema Generation : Column Ordering . 36

Schema : Read-Only . 36

SchemaTool . 36

Schema Adaption . 43

RDBMS : Datastore Schema SPI . 43

EntityManager . 47

Opening/Closing an EntityManager . 47

Persisting an Object . 48

Persisting multiple Objects in one call . 48

Finding an object by its identity . 49

Finding an object by its class and unique key field value(s) . 49

Deleting an Object . 50

Deleting multiple Objects . 50

Modifying a persisted Object . 51

Modifying multiple persisted Objects . 51

Refreshing a persisted Object . 51

Getting EntityManager for an object . 52

Cascading Operations . 52

Orphans . 53

Managing Relationships. 53

Transactions with lots of data . 55

Level 1 Cache . 56

Object Lifecycle . 58

Transaction PersistenceContext . 58

Extended PersistenceContext . 58

Detachment . 58

Helper Methods . 59

Transactions . 60

Locally-Managed Transactions . 60

JTA Transactions . 61

Container-Managed Transactions . 63

Spring-Managed Transactions . 63

No Transactions . 63

Transaction Isolation . 64

Read-Only Transactions . 64

Flushing . 65

Transaction Savepoints . 66

Locking . 67

Optimistic Locking . 67

Pessimistic (Datastore) Locking . 68

Datastore Connections . 71

Transactional Context . 71

Nontransactional Context . 72

User Connection . 72

Connection Pooling . 73

Data Sources . 78

Multitenancy . 82

Multitenancy via Discriminator in Table. 82

Bean Validation . 85

Entity Graphs . 86

Default Entity Graph . 86

Named Entity Graphs . 86

Unnamed Entity Graphs . 87

Lifecycle Callbacks. 89

Entity Callbacks . 89

Entity Listener . 90

JavaEE Environments . 92

JBoss AS7 . 92

TomEE . 97

OSGi Environments . 100

JPA and OSGi . 100

Sample using OSGi and JPA. 100

LocalContainerEntityManagerFactoryBean class for use in Virgo 3.0 OSGi environment 101

Performance Tuning . 105

Enhancement . 105

Schema. 105

EntityManagerFactory usage . 106

EntityManager usage . 106

Persistence Process . 107

Database Connection Pooling . 107

Retrieval of object by identity . 108

Value Generators . 108

Collection/Map caching . 108

NonTransactional Reads (Reading persistent objects outside a transaction) 109

Accessing fields of persistent objects when not managed by a EntityManager 109

Fetch Control . 110

Logging . 111

General Comments . 111

Replication. 113

Monitoring. 114

Via API . 114

Using JMX . 114

DataNucleus Logging . 116

Logging Categories . 116

Using Log4J . 117

Using java.util.logging . 118

Sample Log Output . 119

HOWTO : Log with log4j and DataNucleus under OSGi . 119

We saw in JPA Mapping Guide how to map classes for persistence with the JPA
API. In this guide we will describe the JPA API itself, showing how to persist,
update and delete objects from persistence.

You should familiarise yourself with the JPA 2.2 Javadocs.

1

mapping.html
http://www.datanucleus.org/javadocs/javax.persistence/2.2/

EntityManagerFactory
Any JPA-enabled application will require at least one EntityManagerFactory (EMF). Typically
applications create one per datastore being utilised. An EntityManagerFactory provides access to
EntityManager(s) which allow objects to be persisted, and retrieved. The EntityManagerFactory can
be configured to provide particular behaviour.

 An EntityManagerFactory is designed to be thread-safe. An EntityManager is not

An EntityManagerFactory is expensive to create so you should create one per
datastore for your application and retain it for as long as it is needed. Always
close your EntityManagerFactory after you have finished with it.

Create an EMF in JavaSE
The simplest way of creating an EntityManagerFactory in a JavaSE environment is as follows

import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;

...

EntityManagerFactory emf = Persistence.createEntityManagerFactory("myPU");

Here we provide the name of the persistence-unit which defines the datastore, properties, classes,
meta-data etc to be used. An alternative is to specify the properties to use along with the
persistence-unit name; in that case the passed properties will override any that are specified for the
persistence unit itself.

EntityManagerFactory emf = Persistence.createEntityManagerFactory("myPU",
overridingProps);

Create an EMF in JavaEE
If you want an application-managed EMF then you create it by injection like this, providing the
name of the required persistence-unit

@PersistenceUnit(unitName="myPU")
EntityManagerFactory emf;

If you want a container-managed EM then you create it by injection like this, providing the name
of the required persistence-unit

2

http://www.datanucleus.org/javadocs/javax.persistence/2.2/javax/persistence/EntityManagerFactory.html
#persistenceunit
#persistenceunit
#persistenceunit

@PersistenceContext(unitName="myPU")
EntityManager em;

Please refer to the docs for your JavaEE server for more details.

Persistence Unit
When designing an application you can usually nicely separate your entities into independent
groupings that can be treated separately, perhaps within a different DAO object, if using DAOs. JPA
introduces the idea of a persistence-unit. A persistence-unit provides a convenient way of specifying
a set of metadata files, and classes, and jars that contain all classes to be persisted in a grouping.
The persistence-unit is named, and the name is used for identifying it. Consequently this name can
then be used when defining what classes are to be enhanced, for example.

To define a persistence-unit you first need to add a file persistence.xml to the META-INF/ directory of
your application jar. This file will be used to define your persistence-unit(s). Let’s show an example

3

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd" version="2.2">

 <!-- Online Store -->
 <persistence-unit name="OnlineStore">
 <provider>org.datanucleus.api.jpa.PersistenceProviderImpl</provider>
 <class>mydomain.samples.metadata.store.Product</class>
 <class>mydomain.samples.metadata.store.Book</class>
 <class>mydomain.samples.metadata.store.CompactDisc</class>
 <class>mydomain.samples.metadata.store.Customer</class>
 <class>mydomain.samples.metadata.store.Supplier</class>
 <exclude-unlisted-classes/>
 <properties>
 <property name="javax.persistence.jdbc.url" value="jdbc:h2:datanucleus"/>
 <property name="javax.persistence.jdbc.user" value="sa"/>
 <property name="javax.persistence.jdbc.password" value=""/>
 </properties>
 </persistence-unit>

 <!-- Accounting -->
 <persistence-unit name="Accounting">
 <provider>org.datanucleus.api.jpa.PersistenceProviderImpl</provider>
 <mapping-file>com/datanucleus/samples/metadata/accounts/orm.xml</mapping-file>
 <properties>
 <property name="javax.persistence.jdbc.url" value="jdbc:h2:datanucleus"/>
 <property name="javax.persistence.jdbc.user" value="sa"/>
 <property name="javax.persistence.jdbc.password" value=""/>
 </properties>
 </persistence-unit>

</persistence>

In this example we have defined 2 persistence-unit(s). The first has the name "OnlineStore" and
contains 5 classes (annotated). The second has the name "Accounting" and contains a metadata file
called orm.xml in a particular package (which will define the classes being part of that unit). This
means that once we have defined this we can reference these _persistence-unit_s in our persistence
operations. You can find the XSD for persistence.xml here.

There are several sub-elements of this persistence.xml file worth describing

• provider - the JPA persistence provider to be used. The JPA persistence "provider" for
DataNucleus is org.datanucleus.api.jpa.PersistenceProviderImpl

• jta-data-source - JNDI name for JTA connections (make sure you set transaction-type as JTA on
the persistence-unit for this) This is only for RDBMS.

• non-jta-data-source - JNDI name for non-JTA connections. Note that if using a JTA datasource as

4

http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd

the primary connection, you ought to provide a non-jta-data-source also since any schema
generation and/or sequence handling will need to use that This is only for RDBMS.

• shared-cache-mode - Defines the way the L2 cache will operate. ALL means all entities cached.
NONE means no entities will be cached. ENABLE_SELECTIVE means only cache the entities that
are specified. DISABLE_SELECTIVE means cache all unless specified. UNSPECIFIED leaves it to
DataNucleus.

• validation-mode - Defines the validation mode for Bean Validation. AUTO, CALLBACK or NONE.

• jar-file - name of a JAR file to scan for annotated classes to include in this persistence-unit.

• mapping-file - name of an XML "mapping" file containing persistence information to be
included in this persistence-unit.

• class - name of an annotated class to include in this persistence-unit

• properties - properties defining the persistence factory to be used. Please refer to EMF
Properties for details

Metadata loading using persistence unit

When you specify an EMF using a persistence.xml it will load the metadata for all classes that are
specified directly in the persistence unit. If you don’t have the exclude-unlisted-classes set to true
then it will also do a CLASSPATH scan to try to find any other annotated classes that are part of that
persistence unit. To set the CLASSPATH scanner to a custom version use the persistence property
datanucleus.metadata.scanner and set it to the classname of the scanner class.

Specifying the datastore properties

With a persistence-unit you have 2 ways of specifying the datastore to use

• Specify the connection URL/userName/password(/driver) and it will internally create a
DataSource for this URL (or equivalent for non-RDBMS). This is achieved by specifying
javax.persistence.jdbc.url, javax.persistence.jdbc.user, javax.persistence.jdbc.password,
javax.persistence.jdbc.driver properties. This optionally includes connection pooling
dependent on datastore.

• Specify the JNDI name of the connectionFactory (only for RDBMS). This is achieved by
specifying javax.persistence.jtaDataSource, and javax.persistence.nonJtaDataSource (for
secondary operations) or by specifying the element(s) jta-data-source/non-jta-data-source

The connection "url" value for the different supported datastores is defined in the
Datastore Guide

Restricting to specific classes

If you want to just have specific classes in the persistence-unit you can specify them using the class
element, and then add exclude-unlisted-classes, like this

5

persistence.html#emf_properties
persistence.html#emf_properties
../datastores/datastores.html

<persistence-unit name="Store">
 <provider>org.datanucleus.api.jpa.PersistenceProviderImpl</provider>
 <class>mydomain.samples.metadata.store.Product</class>
 <class>mydomain.samples.metadata.store.Book</class>
 <class>mydomain.samples.metadata.store.CompactDisc</class>
 <exclude-unlisted-classes/>
 ...
</persistence-unit>

If you don’t include the exclude-unlisted-classes then DataNucleus will search for annotated
classes starting at the root of the persistence-unit (the root directory in the CLASSPATH that contains
the META-INF/persistence.xml file).

Dynamically generated Persistence-Unit

DataNucleus allows an extension to JPA to dynamically create persistence-units at runtime. Use the
following code sample as a guide. Obviously any classes defined in the persistence-unit need to
have been enhanced.

import org.datanucleus.metadata.PersistenceUnitMetaData;
import org.datanucleus.api.jpa.JPAEntityManagerFactory;

PersistenceUnitMetaData pumd = new PersistenceUnitMetaData("dynamic-unit",
"RESOURCE_LOCAL", null);
pumd.addClassName("mydomain.test.A");
pumd.setExcludeUnlistedClasses();
pumd.addProperty("javax.persistence.jdbc.url", "jdbc:h2:mem:nucleus");
pumd.addProperty("javax.persistence.jdbc.user", "sa");
pumd.addProperty("javax.persistence.jdbc.password", "");
pumd.addProperty("datanucleus.schema.autoCreateAll", "true");

EntityManagerFactory emf = new JPAEntityManagerFactory(pumd, null);

It should be noted that if you call pumd.toString(); then this returns the text that would have been
found in a persistence.xml file.

EntityManagerFactory Properties
An EntityManagerFactory is very configurable, and DataNucleus provides many properties to tailor
its behaviour to your persistence needs.

Standard JPA Properties

6

Parameter Description + Values

javax.persistence.provi
der

Class name of the provider to use. DataNucleus has a provider name of
org.datanucleus.api.jpa.PersistenceProviderImpl. If you only have 1
persistence provider in the CLASSPATH then this doesn’t need specifying.

javax.persistence.trans
actionType

Type of transactions to use. In Java SE the default is RESOURCE_LOCAL. In
Java EE the default is JTA. Note that if using a JTA datasource as the
primary connection, you ought to provide a non-jta-data-source also since
any schema generation and/or sequence handling will need to use that.
{RESOURCE_LOCAL, JTA}

javax.persistence.jtaDat
aSource

JNDI name of a (transactional) JTA data source. Note that if using a JTA
datasource as the primary connection, you ought to provide a non-jta-
data-source also since any schema generation and/or sequence handling
will need to use that.

javax.persistence.nonJt
aDataSource

JNDI name of a (non-transactional) data source. This is used for
schema/value generation operations.

javax.persistence.jdbc.u
rl

URL specifying the datastore to use for persistence. Note that this will
define the type of datastore as well as the datastore itself. Please refer to
the Datastore Guide for the URL appropriate for the type of datastore
you’re using.

javax.persistence.jdbc.u
ser

Username to use for connecting to the DB

javax.persistence.jdbc.p
assword

Password to use for connecting to the DB

javax.persistence.jdbc.d
river

The name of the (JDBC) driver to use for the DB (for RDBMS only, and not
needed for JDBC 4+ drivers). Note that some 3rd party connection pools
do require the driver class name still. For LDAP this would be the initial
context factory.

javax.persistence.query
.timeout

Timeout for queries (global)

javax.persistence.share
dCache.mode

The mode of operation of the L2 cache, deciding which entities are
cached. The default (UNSPECIFIED) is the same as DISABLE_SELECTIVE.
See also Cache docs for JPA {NONE, ALL, ENABLE_SELECTIVE,
DISABLE_SELECTIVE, UNSPECIFIED}

javax.persistence.valid
ation.mode

Determines whether the automatic lifecycle event validation is in effect.
{auto, callback, none}

javax.persistence.valid
ation.group.pre-persist

The classes to validation on pre-persist callback

javax.persistence.valid
ation.group.pre-update

The classes to validation on pre-update callback

javax.persistence.valid
ation.group.pre-remove

The classes to validation on pre-remove callback

7

../datastores/datastores.html
persistence.html#cache_level2

Parameter Description + Values

javax.persistence.valid
ation.factory

The validation factory to use in validation

javax.persistence.bean.
manager

CDI BeanManager, to enable CDI injection into AttributeConverter and
event listener objects.

javax.persistence.sche
ma-
generation.database.act
ion

Whether to perform any schema generation to the database at startup.
Will process the schema for all classes that have metadata loaded at
startup (i.e the classes specified in a persistence-unit). {create, drop, drop-
and-create, none}

javax.persistence.sche
ma-
generation.scripts.actio
n

Whether to perform any schema generation into scripts at startup. Will
process the schema for all classes that have metadata loaded at startup
(i.e the classes specified in a persistence-unit). {create, drop, drop-and-
create, none}

javax.persistence.sche
ma-generation.create-
source

Specifies the order for create operations. If a script is provided then
defaults to "script", otherwise defaults to "metadata". {script, metadata,
script-then-metadata, metadata-then-script}

javax.persistence.sche
ma-
generation.scripts.creat
e-target

Name of the script file to write to if doing a "create" with the target as
"scripts" {datanucleus-schema-create.ddl, {filename}}

javax.persistence.sche
ma-generation.create-
script-source

Name of a script file to run to create tables. Can be absolute filename, or
URL string {filename}

javax.persistence.sche
ma-generation.drop-
source

Specifies the order for drop operations. If a script is provided then
defaults to "script", otherwise defaults to "metadata". {script, metadata,
script-then-metadata, metadata-then-script}

javax.persistence.sche
ma-
generation.scripts.drop-
target

Name of the script file to write to if doing a "drop" with the target as
"scripts" {datanucleus-schema-drop.ddl, {filename}}

javax.persistence.sche
ma-generation.drop-
script-source

Name of a script file to run to drop tables. Can be absolute filename, or
URL string {filename}

javax.persistence.sql-
load-script-source

Name of a script file to run to load data into the schema. Can be absolute
filename, or URL string {filename}

DataNucleus Datastore Properties

DataNucleus provides the following properties for configuring the datastore used by the
EntityManagerFactory.

8

Parameter Description + Values

datanucleus.Connectio
nURL

Refer to javax.persistence.jdbc.url.

datanucleus.Connectio
nUserName

Refer to javax.persistence.jdbc.user.

datanucleus.Connectio
nPassword

Refer to javax.persistence.jdbc.password.

datanucleus.Connectio
nDriverName

Refer to javax.persistence.jdbc.driver.

datanucleus.Connectio
nFactory

Instance of a connection factory for transactional connections. This is an
alternative to datanucleus.ConnectionURL. Only for RDBMS, and it
must be an instance of javax.sql.DataSource. Note that you will also
need to define a separate ConnectionFactory2 for schema/sequence
operations where those are required. See Data Sources

datanucleus.Connectio
nFactory2

Instance of a connection factory for nontransactional connections. This
is an alternative to datanucleus.ConnectionURL. Only for RDBMS, and
it must be an instance of javax.sql.DataSource. Note that you if using
ConnectionFactory then you need to define this as a separate factory
for schema/sequence operations. See Data Sources.

datanucleus.Connectio
nFactoryName

The JNDI name for a connection factory for transactional connections.
Only for RDBMS, and it must be a JNDI name that points to a
javax.sql.DataSource object. See Data Sources.

datanucleus.Connectio
nFactory2Name

The JNDI name for a connection factory for nontransactional
connections. Only for RDBMS, and it must be a JNDI name that points to
a javax.sql.DataSource object. See Data Sources.

datanucleus.Connectio
nPasswordDecrypter

Name of a class that implements
org.datanucleus.store.ConnectionEncryptionProvider and should only be
specified if the password is encrypted in the persistence properties

DataNucleus Persistence Properties

DataNucleus provides the following properties for configuring general persistence handling used
by the EntityManagerFactory.

Parameter Description + Values

datanucleus.IgnoreCac
he

Whether to ignore the cache for queries. If the user sets this to true then
the query will evaluate in the datastore, but the instances returned will
be formed from the datastore; this means that if an instance has been
modified and its datastore values match the query then the instance
returned will not be the currently cached (updated) instance, instead an
instance formed using the datastore values. {true, false}

9

#datasource
#datasource
#datasource
#datasource

Parameter Description + Values

datanucleus.Multithrea
ded

Whether to try run the EntityManager as multithreaded. Note that this is
only a hint to try to allow thread-safe operations on the EM. Users are
always advised to run an EM as single threaded, since some operations
are not currently locked and so could cause issues multi-threaded. {true,
false}

datanucleus.Optimistic Whether to use optimistic locking. {true, false}

datanucleus.RetainValu
es

Whether to suppress the clearing of values from persistent instances on
transaction completion. {true, false}

datanucleus.RestoreVal
ues

Whether persistent object have transactional field values restored when
transaction rollback occurs. {true, false}

datanucleus.mapping.C
atalog

Name of the catalog to use by default for all classes persisted using this
EMF. This can be overridden in the MetaData where required, and is
optional. DataNucleus will prefix all table names with this catalog name if
the RDBMS supports specification of catalog names in DDL. RDBMS only

datanucleus.mapping.S
chema

Name of the schema to use by default for all classes persisted using this
EMF. This can be overridden in the MetaData where required, and is
optional. DataNucleus will prefix all table names with this schema name
if the RDBMS supports specification of schema names in DDL. RDBMS
only

datanucleus.tenantId String id to use as a discriminator on all persistable class tables to restrict
data for the tenant using this application instance (aka multi-tenancy via
discriminator). RDBMS, MongoDB, HBase, Neo4j, Cassandra only

datanucleus.tenantProv
ider

Instance of a class that implements
org.datanucleus.store.schema.MultiTenancyProvider which will return the
tenant name to use for each call. RDBMS, MongoDB, HBase, Neo4j,
Cassandra only

datanucleus.CurrentUs
er

String defining the current user for the persistence process. Used by
auditing. RDBMS datastores only

datanucleus.CurrentUs
erProvider

Instance of a class that implements
org.datanucleus.store.schema.CurrentUserProvider which will return the
current user to use for each call. Used by auditing. RDBMS datastores only

datanucleus.DetachAll
OnCommit

Allows the user to select that when a transaction is committed all objects
enlisted in that transaction will be automatically detached. {true, false}

datanucleus.detachAllO
nRollback

Allows the user to select that when a transaction is rolled back all objects
enlisted in that transaction will be automatically detached. {true, false}

datanucleus.CopyOnAtt
ach

Whether, when attaching a detached object, we create an attached copy
or simply migrate the detached object to attached state {true, false}

datanucleus.allowAttac
hOfTransient

When you call EM.merge with a transient object (with PK fields set), if
you enable this feature then it will first check for existence of an object in
the datastore with the same identity and, if present, will merge into that
object (rather than just trying to persist a new object). {true, false}

10

#locking_optimistic
#multitenancy
#multitenancy
mapping.html#auditing
mapping.html#auditing

Parameter Description + Values

datanucleus.attachSam
eDatastore

When attaching an object DataNucleus by default assumes that you’re
attaching to the same datastore as you detached from. DataNucleus does
though allow you to attach to a different datastore (for things like
replication). Set this to false if you want to attach to a different datastore
to what you detached from. This property is also useful if you are
attaching and want it to check for existence of the object in the datastore
before attaching, and create it if not present (true assumes that the object
exists). {true, false}

datanucleus.detachAs
Wrapped

When detaching, any mutable second class objects (Collections, Maps,
Dates etc) are typically detached as the basic form (so you can use them
on client-side of your application). This property allows you to select to
detach as wrapped objects. It only works with "detachAllOnCommit"
situations (not with detachCopy) currently {true, false}

datanucleus.DetachOnC
lose

This allows the user to specify whether, when an EM is closed, that all
objects in the L1 cache are automatically detached. Users are
recommended to use the datanucleus.DetachAllOnCommit wherever
possible. This will not work in JCA mode. {true, false}

datanucleus.detachmen
tFields

When detaching you can control what happens to loaded/unloaded fields
of the FetchPlan. The default is to load any unloaded fields of the current
FetchPlan before detaching. You can also unload any loaded fields that
are not in the current FetchPlan (so you only get the fields you require) as
well as a combination of both options {load-fields, unload-fields, load-
unload-fields}

datanucleus.maxFetch
Depth

Specifies the default maximum fetch depth to use for fetching operations.
The JPA spec doesn’t provide fetch group control, just a "default fetch
group" type concept, consequently the default there is -1 currently. {-1, 1,
positive integer}

datanucleus.detachedSt
ate

Allows control over which mechanism to use to determine the fields to be
detached. By default DataNucleus uses the defined "fetch-groups".
Obviously JPA doesn’t have that (although it is an option with
DataNucleus), so we also allow loaded which will detach just the
currently loaded fields, and all which will detach all fields of the object
(be careful with this option since it, when used with maxFetchDepth
of -1 will detach a whole object graph!) {fetch-groups, all, loaded}

datanucleus.ServerTim
eZoneID

Id of the TimeZone under which the datastore server is running. If this is
not specified or is set to null it is assumed that the datastore server is
running in the same timezone as the JVM under which DataNucleus is
running.

datanucleus.Persistenc
eUnitLoadClasses

Used when we have specified the persistence-unit name for a EMF and
where we want the datastore "tables" for all classes of that persistence-
unit loading up into the StoreManager. Defaults to false since some
databases are slow so such an operation would slow down the startup
process. {true, false}

datanucleus.persistenc
eXmlFilename

URL name of the persistence.xml file that should be used instead of using
META-INF/persistence.xml.

11

Parameter Description + Values

datanucleus.datastoreR
eadTimeout

The timeout to apply to all reads (millisecs) (query or find operations).
Only applies if the underlying datastore supports it {0, positive value}

datanucleus.datastore
WriteTimeout

The timeout to apply to all writes (millisecs). (persist operations). Only
applies if the underlying datastore supports it {0, positive value}

datanucleus.singletonE
MFForName

Whether to only allow a singleton EMF for persistence-unit. If a
subsequent request is made for an EMF with a name that already exists
then a warning will be logged and the original EMF returned. {true,
false}

datanucleus.jmxType Which JMX server to use when hooking into JMX. Please refer to the
Monitoring Guide {default, mx4j}

datanucleus.type.wrap
per.basis

Whether to use the "instantiated" type of a field, or the "declared" type of
a field to determine which wrapper to use when the field is SCO mutable.
{instantiated, declared}

datanucleus.deletionPo
licy

Allows the user to decide the policy when deleting objects. The default is
"JDO2" which firstly checks if the field is dependent and if so deletes
dependents, and then for others will null any foreign keys out. The
problem with this option is that it takes no account of whether the user
has also defined foreign-key metadata, so we provide a "DataNucleus"
mode that does the dependent field part first and then if a FK element is
defined will leave it to the FK in the datastore to perform any actions, and
otherwise does the nulling. {JDO2, DataNucleus}

datanucleus.identityStr
ingTranslatorType

You can allow identities input to em.find(id) be translated into valid ids if
there is a suitable translator. See Identity String Translator Extension

datanucleus.identityKe
yTranslatorType

You can allow identities input to em.find(cls, key) be translated into valid
ids if there is a suitable key translator. See Identity Key Translator
Extension

datanucleus.datastoreI
dentityType

Which "datastore-identity" class plugin to use to represent datastore
identities. See Datastore Identity extension for details. {datanucleus,
kodo, xcalia, …}

datanucleus.executionC
ontext.maxIdle

Specifies the maximum number of ExecutionContext objects that are
pooled ready for use {20}

datanucleus.executionC
ontext.reaperThread

Whether to start a reaper thread that continually monitors the pool of
ExecutionContext objects and frees them off after they have surpassed
their expiration period {true, false}

datanucleus.executionC
ontext.closeActiveTxAct
ion

Defines the action if an EM is closed and there is an active transaction
present. {rollback, exception}

datanucleus.objectProv
ider.className

Class name for the ObjectProvider to use when managing object state.
The default for RDBMS is ReferentialStateManagerImpl, and is
StateManagerImpl for all other datastores.

12

#monitoring
extensions/extension.html#identity_string_translator
extensions/extensions.html#identity_key_translator
extensions/extensions.html#identity_key_translator
extensions/extension.html#datastoreidentity

Parameter Description + Values

datanucleus.manageRel
ationships

This allows the user control over whether DataNucleus will try to manage
bidirectional relations, correcting the input objects so that all relations
are consistent. This process runs when flush()/commit() is called. {true,
false}

datanucleus.manageRel
ationshipsChecks

This allows the user control over whether DataNucleus will make
consistency checks on bidirectional relations. If
"datanucleus.managedRelationships" is not selected then no checks are
performed. If a consistency check fails at flush()/commit() then an
exception is thrown. {true, false}

datanucleus.persistenc
eByReachabilityAtCom
mit

Whether to run the "persistence-by-reachability" algorithm at commit()
time. This means that objects that were reachable at a call to
makePersistent() but that are no longer persistent will be removed from
persistence. Turn this off for performance. {true, false}

datanucleus.classLoade
rResolverName

Name of a ClassLoaderResolver to use in class loading. This property
allows the user to override the default with their own class better suited
to their own loading requirements. {datanucleus, {name of class-loader-
resolver plugin}}

datanucleus.primaryCl
assLoader

Sets a primary classloader for situations where a primary classloader is
not accessible. This ClassLoader is used when the class is not found in the
default ClassLoader search path. As example, when the database driver is
loaded by a different ClassLoader not in the ClassLoader search path for
PA specifications.

datanucleus.plugin.plu
ginRegistryClassName

Name of a class that acts as registry for plug-ins. This defaults to
org.datanucleus.plugin.NonManagedPluginRegistry (for when not using
OSGi). If you are within an OSGi environment you can set this to
org.datanucleus.plugin.OSGiPluginRegistry

datanucleus.plugin.plu
ginRegistryBundleChec
k

Defines what happens when plugin bundles are found and are duplicated
{exception, log, none}

datanucleus.plugin.allo
wUserBundles

Defines whether user-provided bundles providing DataNucleus
extensions will be registered. This is only respected if used in a non-
Eclipse OSGi environment. {true, false}

datanucleus.plugin.vali
datePlugins

Defines whether a validation step should be performed checking for
plugin dependencies etc. This is only respected if used in a non-Eclipse
OSGi environment. {true, false}

datanucleus.findObject.
validateWhenCached

When a user calls em.find this turns off of validation when an object is
found in the (L2) cache. {true, false}

datanucleus.findObject.
typeConversion

When calling em.find(Class, Object) the second argument really ought to
be the exact type of the primary-key field. This property enables
conversion of basic numeric types (Long, Integer, Short) to the
appropriate numeric type (if the PK is a numeric type). Set this to false if
you want strict JPA compliance. {true, false}

13

DataNucleus Schema Properties

DataNucleus provides the following properties for configuring schema handling used by the
EntityManagerFactory.

Parameter Description + Values

datanucleus.schema.au
toCreateAll

Whether to automatically generate any schema, tables, columns,
constraints that don’t exist. Please refer to the Schema Guide for more
details. {true, false}

datanucleus.schema.au
toCreateDatabase

Whether to automatically generate any database (catalog/schema) that
doesn’t exist. This depends very much on whether the datastore in
question supports this operation. Please refer to the Schema Guide for
more details. {true, false}

datanucleus.schema.au
toCreateTables

Whether to automatically generate any tables that don’t exist. Please
refer to the Schema Guide for more details. {true, false}

datanucleus.schema.au
toCreateColumns

Whether to automatically generate any columns that don’t exist. Please
refer to the Schema Guide for more details. {true, false}

datanucleus.schema.au
toCreateConstraints

Whether to automatically generate any constraints that don’t exist. Please
refer to the Schema Guide for more details. {true, false}

datanucleus.autoCreate
WarnOnError

Whether to only log a warning when errors occur during the auto-
creation/validation process. Please use with care since if the schema is
incorrect errors will likely come up later and this will postpone those
error checks til later, when it may be too late!! {true, false}

datanucleus.schema.val
idateAll

Alias for defining datanucleus.schema.validateTables,
datanucleus.schema.validateColumns and
datanucleus.schema.validateConstraints as all true. Please refer to the
Schema Guide for more details. {true, false}

datanucleus.schema.val
idateTables

Whether to validate tables against the persistence definition. Please refer
to the Schema Guide for more details. {true, false}

datanucleus.schema.val
idateColumns

Whether to validate columns against the persistence definition. This
refers to the column detail structure and NOT to whether the column
exists or not. Please refer to the Schema Guide for more details. {true,
false}

datanucleus.schema.val
idateConstraints

Whether to validate table constraints against the persistence definition.
Please refer to the Schema Guide for more details. {true, false}

datanucleus.readOnlyD
atastore

Whether the datastore is read-only or not (fixed in structure and
contents) {true, false}

datanucleus.readOnlyD
atastoreAction

What happens when a datastore is read-only and an object is attempted
to be persisted. {exception, ignore}

14

#schema
#schema
#schema
#schema
#schema
#schema
#schema
#schema
#schema

Parameter Description + Values

datanucleus.generateSc
hema.database.mode

Whether to perform any schema generation to the database at startup.
Will process the schema for all classes that have metadata loaded at
startup (i.e the classes specified in a persistence-unit). {create, drop, drop-
and-create, none}

datanucleus.generateSc
hema.scripts.mode

Whether to perform any schema generation into scripts at startup. Will
process the schema for all classes that have metadata loaded at startup
(i.e the classes specified in a persistence-unit). {create, drop, drop-and-
create, none}

datanucleus.generateSc
hema.scripts.create.tar
get

Name of the script file to write to if doing a "create" with the target as
"scripts" {datanucleus-schema-create.ddl, {filename}}

datanucleus.generateSc
hema.scripts.drop.targe
t

Name of the script file to write to if doing a "drop" with the target as
"scripts" {datanucleus-schema-drop.ddl, {filename}}

datanucleus.generateSc
hema.scripts.create.sou
rce

Name of a script file to run to create tables. Can be absolute filename, or
URL string

datanucleus.generateSc
hema.scripts.drop.sour
ce

Name of a script file to run to drop tables. Can be absolute filename, or
URL string

datanucleus.generateSc
hema.scripts.load

Name of a script file to run to load data into the schema. Can be absolute
filename, or URL string

datanucleus.identifierF
actory

Name of the identifier factory to use when generating table/column
names etc (RDBMS datastores only). See also the Datastore Identifier
Guide. {datanucleus1, datanucleus2, jpox, jpa, {user-plugin-name}}

datanucleus.identifier.
namingFactory

Name of the identifier NamingFactory to use when generating
table/column names etc (non-RDBMS datastores). {datanucleus2, jpa,
{user-plugin-name}}

datanucleus.identifier.c
ase

Which case to use in generated table/column identifier names. See also
the Datastore Identifier Guide RDBMS defaults to UPPERCASE. Cassandra
defaults to lowercase {UPPERCASE, lowercase, MixedCase}

datanucleus.identifier.
wordSeparator

Separator character(s) to use between words in generated identifiers.
Defaults to "_" (underscore)

datanucleus.identifier.t
ablePrefix

Prefix to be prepended to all generated table names (if the identifier
factory supports it)

datanucleus.identifier.t
ableSuffix

Suffix to be appended to all generated table names (if the identifier
factory supports it)

datanucleus.store.allow
ReferencesWithNoImpl
ementations

Whether we permit a reference field (1-1 relation) or collection of
references where there are no defined implementations of the reference.
False means that an exception will be thrown during schema generation
for the field {true, false}

15

mapping.html#rdbms_jpa
mapping.html#rdbms_jpa
mapping.html#jpa

DataNucleus Transaction Properties

DataNucleus provides the following properties for configuring transaction handling used by the
EntityManagerFactory.

Parameter Description + Values

datanucleus.transactio
n.type

Type of transaction to use. If running under JavaSE the default is
RESOURCE_LOCAL, and if running under JavaEE the default is JTA.
{RESOURCE_LOCAL, JTA}

datanucleus.transactio
n.isolation

Select the default transaction isolation level for ALL EntityManagers.
Some databases do not support all isolation levels, refer to your database
documentation. Please refer to the transaction guide {read-uncommitted,
read-committed, repeatable-read, serializable}

datanucleus.transactio
n.jta.transactionManag
erLocator

Selects the locator to use when using JTA transactions so that
DataNucleus can find the JTA TransactionManager. If this isn’t specified
and using JTA transactions DataNucleus will search all available locators
which could have a performance impact. See JTA Locator extension. If
specifying "custom_jndi" please also specify
"datanucleus.transaction.jta.transactionManagerJNDI" {autodetect, jboss,
jonas, jotm, oc4j, orion, resin, sap, sun, weblogic, websphere, custom_jndi,
alias of a JTA transaction locator}

datanucleus.transactio
n.jta.transactionManag
erJNDI

Name of a JNDI location to find the JTA transaction manager from (when
using JTA transactions). This is for the case where you know where it is
located. If not used DataNucleus will try certain well-known locations

datanucleus.transactio
n.nontx.read

Whether to allow nontransactional reads {false, true}

datanucleus.transactio
n.nontx.write

Whether to allow nontransactional writes {false, true}

datanucleus.transactio
n.nontx.atomic

When a user invokes a nontransactional operation they can choose for
these changes to go straight to the datastore (atomically) or to wait until
either the next transaction commit, or close of the EM. Disable this if you
want operations to be processed with the next real transaction. {true,
false}

datanucleus.SerializeRe
ad

With datastore transactions you can apply locking to objects as they are
read from the datastore. This setting applies as the default for all EMs
obtained. You can also specify this on a per-transaction or per-query basis
(which is often better to avoid deadlocks etc) {true, false}

datanucleus.flush.auto.
objectLimit

For use when using (DataNucleus) "AUTO" flush mode (see
datanucleus.flush.mode) and is the limit on number of dirty objects before
a flush to the datastore will be performed. {1, positive integer}

16

#transaction_isolation
../extensions/extensions.html#jta_locator

Parameter Description + Values

datanucleus.flush.mode Sets when persistence operations are flushed to the datastore. This
overrides the JPA flush mode. MANUAL means that operations will be
sent only on flush()/commit() (same as JPA FlushModeType.COMMIT).
QUERY means that operations will be sent on flush()/commit() and just
before query execution (same as JPA FlushModeType.AUTO). AUTO
means that operations will be sent immediately (auto-flush). {MANUAL,
QUERY, AUTO}

datanucleus.flush.opti
mised

Whether to use an "optimised" flush process, changing the order of
persists for referential integrity (as used by RDBMS typically), or whether
to just build a list of deletes, inserts and updates and do them in batches.
RDBMS defaults to true, whereas other datastores default to false (due to
not having referential integrity, so gaining from batching {true, false}

datanucleus.connection
PoolingType

This property allows you to utilise a 3rd party software package for
enabling connection pooling. When using RDBMS you can select from
DBCP2, C3P0, Proxool, BoneCP, etc. You must have the 3rd party jars in the
CLASSPATH to use these options. Please refer to the Connection Pooling
guide for details. {None, dbcp2-builtin, DBCP2, C3P0, Proxool, BoneCP,
HikariCP, Tomcat, {others}}

datanucleus.connection
PoolingType.nontx

This property allows you to utilise a 3rd party software package for
enabling connection pooling for nontransactional connections using a
DataNucleus plugin. If you don’t specify this value but do define the
above value then that is taken by default. Refer to the above property for
more details. {None, dbcp2-builtin, DBCP2, C3P0, Proxool, BoneCP,
HikariCP, Tomcat, {others}}

datanucleus.connection
.nontx.releaseAfterUse

Applies only to non-transactional connections and refers to whether to
re-use (pool) the connection internally for later use. The default
behaviour is to close any such non-transactional connection after use. If
doing significant non-transactional processing in your application then
this may provide performance benefits, but be careful about the number
of connections being held open (if one is held open per EM). {true, false}

datanucleus.connection
.singleConnectionPerEx
ecutionContext

With an ExecutionContext (EM) we normally allocate one connection for
a transaction and close it after the transaction, then a different
connection for nontransactional ops. This flag acts as a hint to the store
plugin to obtain and retain a single connection throughout the lifetime of
the EM. {true, false}

datanucleus.connection
.resourceType

Resource Type for primary connection {RESOURCE_LOCAL, JTA}

datanucleus.connection
.resourceType2

Resource Type for secondary connection {RESOURCE_LOCAL, JTA}

DataNucleus Cache Properties

DataNucleus provides the following properties for configuring cache handling used by the
EntityManagerFactory.

17

#connection_pooling
#connection_pooling

Parameter Description + Values

datanucleus.cache.colle
ctions

SCO collections can be used in 2 modes in DataNucleus. You can allow
DataNucleus to cache the collections contents, or you can tell
DataNucleus to access the datastore for every access of the SCO collection.
The default is to use the cached collection. {true, false}

datanucleus.cache.colle
ctions.lazy

When using cached collections/maps, the elements/keys/values can be
loaded when the object is initialised, or can be loaded when accessed
(lazy loading). The default is to use lazy loading when the field is not in
the current fetch group, and to not use lazy loading when the field is in
the current fetch group. {true, false}

datanucleus.cache.level
1.type

Name of the type of Level 1 cache to use. Defines the backing map. See
also Cache docs for JPA {soft, weak, strong, {your-plugin-name}}

datanucleus.cache.level
2.type

Name of the type of Level 2 Cache to use. Can be used to interface with
external caching products. Use "none" to turn off L2 caching. See also
Cache docs for JPA {none, soft, weak, javax.cache, coherence, ehcache,
ehcacheclassbased, redis, cacheonix, oscache, spymemcached,
xmemcached, {your-plugin-name}

datanucleus.cache.level
2.mode

The mode of operation of the L2 cache, deciding which entities are
cached. The default (UNSPECIFIED) is the same as DISABLE_SELECTIVE.
See also Cache docs for JPA {NONE, ALL, ENABLE_SELECTIVE,
DISABLE_SELECTIVE, UNSPECIFIED}

datanucleus.cache.level
2.storeMode

Whether to use the L2 cache for storing values (set to "bypass" to not
store within the context of the operation) {use, bypass}

datanucleus.cache.level
2.retrieveMode

Whether to use the L2 cache for retrieving values (set to "bypass" to not
retrieve from L2 cache within the context of the operation, i.e go to the
datastore) {use, bypass}

datanucleus.cache.level
2.updateMode

When the objects in the L2 cache should be updated. Defaults to updating
at commit AND when fields are read from a datastore object {commit-
and-datastore-read, commit}

datanucleus.cache.level
2.cacheName

Name of the cache. This is for use with plugins such as the Tangosol cache
plugin for accessing the particular cache. Please refer to the L2 Cache
docs

datanucleus.cache.level
2.maxSize

Max size for the L2 cache (supported by weak, soft, coherence, ehcache,
ehcacheclassbased, javax.cache) {-1, integer value}

datanucleus.cache.level
2.clearAtClose

Whether the close of the L2 cache (when the EMF closes) should also
clear out any objects from the underlying cache mechanism. By default it
will clear objects out but if the user has configured an external cache
product and wants to share objects across multiple EMFs then this can be
set to false. {true, false}

datanucleus.cache.level
2.batchSize

When objects are added to the L2 cache at commit they are typically
batched. This property sets the max size of the batch. {100, integer value}

datanucleus.cache.level
2.expiryMillis

Some caches (Cacheonix, Redis) allow specification of an expiration time
for objects in the cache. This property is the timeout in milliseconds (will
be unset meaning use cache default). {-1, integer value}

18

#level1_cache
#cache_level2
#cache_level2
#cache_level2
#cache_level2

Parameter Description + Values

datanucleus.cache.level
2.readThrough

With javax.cache L2 caches you can configure the cache to allow read-
through {true, false}

datanucleus.cache.level
2.writeThrough

With javax.cache L2 caches you can configure the cache to allow write-
through {true, false}

datanucleus.cache.level
2.storeByValue

With javax.cache L2 caches you can configure the cache to store by value
(as opposed to by reference) {true, false}

datanucleus.cache.level
2.statisticsEnabled

With javax.cache L2 caches you can configure the cache to enable
statistics gathering (accessible via JMX) {false, true}

datanucleus.cache.quer
yCompilation.type

Type of cache to use for caching of generic query compilations {none,
soft, weak, strong, javax.cache, {your-plugin-name}}

datanucleus.cache.quer
yCompilation.cacheNa
me

Name of cache for generic query compilation. Used by javax.cache
variant. {{your-cache-name}, datanucleus-query-compilation}

datanucleus.cache.quer
yCompilationDatastore.
type

Type of cache to use for caching of datastore query compilations {none,
soft, weak, strong, javax.cache, {your-plugin-name}}

datanucleus.cache.quer
yCompilationDatastore.
cacheName

Name of cache for datastore query compilation. Used by javax.cache
variant. {{your-cache-name}, datanucleus-query-compilation-
datastore}

datanucleus.cache.quer
yResults.type

Type of cache to use for caching query results. {none, soft, weak, strong,
javax.cache, redis, spymemcached, xmemcached, cacheonix, {your-
plugin-name}}

datanucleus.cache.quer
yResults.cacheName

Name of cache for caching the query results. {datanucleus-query, {your-
name}}

datanucleus.cache.quer
yResults.clearAtClose

Whether the close of the Query Results cache (when the EMF closes)
should also clear out any objects from the underlying cache mechanism.
By default it will clear query results out. {true, false}

datanucleus.cache.quer
yResults.maxSize

Max size for the query results cache (supported by weak, soft, strong) {-1,
integer value}

datanucleus.cache.quer
yResults.expiryMillis

Expiry in milliseconds for objects in the query results cache (cacheonix,
redis) {-1, integer value}

DataNucleus Bean Validation Properties

DataNucleus provides the following properties for configuring bean validation handling used by
the EntityManagerFactory.

19

Parameter Description + Values

datanucleus.validation.
mode

Determines whether the automatic lifecycle event validation is in effect.
{auto, callback, none}

datanucleus.validation.
group.pre-persist

The classes to validation on pre-persist callback

datanucleus.validation.
group.pre-update

The classes to validation on pre-update callback

datanucleus.validation.
group.pre-remove

The classes to validation on pre-remove callback

datanucleus.validation.
factory

The validation factory to use in validation

DataNucleus Value Generation Properties

DataNucleus provides the following properties for configuring value generation handling used by
the EntityManagerFactory.

Parameter Description + Values

datanucleus.valuegener
ation.transactionAttrib
ute

Whether to use the EM connection or open a new connection. Only used
by value generators that require a connection to the datastore. {NEW,
EXISTING}

datanucleus.valuegener
ation.transactionIsolati
on

Select the default transaction isolation level for identity generation. Must
have datanucleus.valuegeneration.transactionAttribute set to New. Some
databases do not support all isolation levels, refer to your database
documentation. Please refer to the transaction guide {read-uncommitted,
read-committed, repeatable-read, serializable}

DataNucleus Metadata Properties

DataNucleus provides the following properties for configuring metadata handling used by the
EntityManagerFactory.

Parameter Description + Values

datanucleus.metadata.a
lwaysDetachable

Whether to treat all classes as detachable irrespective of input metadata.
See also "alwaysDetachable" enhancer option. {false, true}

datanucleus.metadata.l
istener.object

Property specifying a org.datanucleus.metadata.MetaDataListener object
that will be registered at startup and will receive notification of all
metadata load activity. {false, true}

20

#transactions_isolation

Parameter Description + Values

datanucleus.metadata.i
gnoreMetaDataForMiss
ingClasses

Whether to ignore classes where metadata is specified. Default (false) is
to throw an exception. {false, true}

datanucleus.metadata.x
ml.validate

Whether to validate the MetaData file(s) for XML correctness (against the
DTD) when parsing. {true, false}

datanucleus.metadata.x
ml.namespaceAware

Whether to allow for XML namespaces in metadata files. The vast
majority of sane people should not need this at all, but it’s enabled by
default to allow for those that do. {true, false}

datanucleus.metadata.a
llowXML

Whether to allow XML metadata. Turn this off if not using any, for
performance. {true, false}

datanucleus.metadata.a
llowAnnotations

Whether to allow annotations metadata. Turn this off if not using any, for
performance. {true, false}

datanucleus.metadata.a
llowLoadAtRuntime

Whether to allow load of metadata at runtime. This is intended for the
situation where you are handling persistence of a persistence-unit and
only want the classes explicitly specified in the persistence-unit. {true,
false}

datanucleus.metadata.d
efaultNullable

Whether the default nullability for the fields should be nullable or non-
nullable when no metadata regarding field nullability is specified at field
level. The default is nullable i.e. to allow null values (since v5.0.0). {true,
false}

datanucleus.metadata.s
canner

Name of a class to use for scanning the classpath for persistent classes
when using a persistence.xml. The class must implement the interface
org.datanucleus.metadata.MetaDataScanner

datanucleus.metadata.
useDiscriminatorForSi
ngleTable

With JPA the spec implies that all use of "single-table" inheritance will use
a discriminator. DataNucleus up to and including 5.0.2 relied on the user
defining the discriminator, whereas it now will add one if not supplied.
Set this to false to get behaviour as it was ⇐ 5.0.2 {true, false}

datanucleus.metadata.j
avaxValidationShortcut
s

Whether to process javax.validation @NotNull and @Size annotations as
their JPA @Column equivalent. {false, true}

DataNucleus Query Properties

DataNucleus provides the following properties for configuring query handling used by the
EntityManagerFactory.

Parameter Description + Values

datanucleus.query.flus
hBeforeExecution

This property can enforce a flush to the datastore of any outstanding
changes just before executing all queries. If using optimistic locking any
updates are typically held back until flush/commit and so the query
would otherwise not take them into account. {true, false}

21

Parameter Description + Values

datanucleus.query.jpql.
allowRange

JPQL queries, by the JPA spec, do not allow specification of the range in
the query string. This extension to allow "RANGE x,y" after the ORDER BY
clause of JPQL string queries. {false, true}

datanucleus.query.chec
kUnusedParameters

Whether to check for unused input parameters and throw an exception if
found. The JPA spec requires this check and is a good guide to having
misnamed a parameter name in the query for example. {true, false}

datanucleus.sql.syntax
Checks

Whether to perform some basic syntax checking on SQL/"native" queries
that they include PK, version and discriminator columns where
necessary. {true, false}

DataNucleus Datastore-Specific Properties

DataNucleus provides the following properties for configuring datastore-specific used by the
EntityManagerFactory.

Parameter Description + Values

datanucleus.rdbms.dat
astoreAdapterClassNa
me

This property allows you to supply the class name of the adapter to use
for your datastore. The default is not to specify this property and
DataNucleus will autodetect the datastore type and use its own internal
datastore adapter classes. This allows you to override the default
behaviour where there maybe is some issue with the default adapter
class. Applicable for RDBMS only

datanucleus.rdbms.use
LegacyNativeValueStra
tegy

This property changes the process for deciding the value strategy to use
when the user has selected "auto" to be like it was with version 3.0 and
earlier, so using "increment" and "uuid-hex". Applicable for RDBMS
only {true, false}

datanucleus.rdbms.stat
ementBatchLimit

Maximum number of statements that can be batched. The default is 50
and also applies to delete of objects. Please refer to the Statement
Batching guide Applicable for RDBMS only {integer value (0 = no
batching)}

datanucleus.rdbms.che
ckExistTablesOrViews

Whether to check if the table/view exists. If false, it disables the automatic
generation of tables that don’t exist. Applicable for RDBMS only {true,
false}

datanucleus.rdbms.use
DefaultSqlType

This property applies for schema generation in terms of setting the
default column "sql-type" (when you haven’t defined it) and where the
JDBC driver has multiple possible "sql-type" for a "jdbc-type". If the
property is set to false, it will take the first provided "sql-type" from the
JDBC driver. If the property is set to true, it will take the "sql-type" that
matches what the DataNucleus "plugin.xml" implies. Applicable for
RDBMS only. {true, false}

22

datastores.html#statement_batching
datastores.html#statement_batching

Parameter Description + Values

datanucleus.rdbms.initi
alizeColumnInfo

Allows control over what column information is initialised when a table
is loaded for the first time. By default info for all columns will be loaded.
Unfortunately some RDBMS are particularly poor at returning this
information so we allow reduced forms to just load the primary key
column info, or not to load any. Applicable for RDBMS only {ALL, PK,
NONE}

datanucleus.rdbms.clas
sAdditionMaxRetries

The maximum number of retries when trying to find a class to persist or
when validating a class. Applicable for RDBMS only {3, A positive
integer}

datanucleus.rdbms.con
straintCreateMode

How to determine the RDBMS constraints to be created. DataNucleus will
automatically add foreign-keys/indices to handle all relationships, and
will utilise the specified MetaData foreign-key information. JDO2 will
only use the information in the MetaData file(s). Applicable for RDBMS
only. {DataNucleus, JDO2}

datanucleus.rdbms.uni
queConstraints.mapInv
erse

Whether to add unique constraints to the element table for a map inverse
field. Applicable for RDBMS only. {true, false}

datanucleus.rdbms.disc
riminatorPerSubclassT
able

Property that controls if only the base class where the discriminator is
defined will have a discriminator column Applicable for RDBMS only.
{false, true}

datanucleus.rdbms.stri
ngDefaultLength

The default (max) length to use for all strings that don’t have their
column length defined in MetaData. Applicable for RDBMS only. {255, A
valid length}

datanucleus.rdbms.stri
ngLengthExceededActi
on

Defines what happens when persisting a String field and its length
exceeds the length of the underlying datastore column. The default is to
throw an Exception. The other option is to truncate the String to the
length of the datastore column. Applicable for RDBMS only
{EXCEPTION, TRUNCATE}

datanucleus.rdbms.use
ColumnDefaultWhenN
ull

If an object is being persisted and a field (column) is null, the default
behaviour is to look whether the column has a "default" value defined in
the datastore and pass that in. You can turn this off and instead pass in
NULL for the column by setting this property to false. Applicable for
RDBMS only. {true, false}

datanucleus.rdbms.per
sistEmptyStringAsNull

When persisting an empty string, should it be persisted as null in the
datastore? This is to allow for datastores such as Oracle that dont
differentiate between null and empty string. If it is set to false and the
datastore doesnt differentiate then a special character will be saved when
storing an empty string (and interpreted when reading in). Applicable
for RDBMS only {true, false}

datanucleus.rdbms.que
ry.fetchDirection

The direction in which the query results will be navigated. Applicable
for RDBMS only {forward, reverse, unknown}

23

Parameter Description + Values

datanucleus.rdbms.que
ry.resultSetType

Type of ResultSet to create. Note 1) Not all JDBC drivers accept all options.
The values correspond directly to the ResultSet options. Note 2) Not all
java.util.List operations are available for scrolling result sets. An
Exception is raised when unsupported operations are invoked.
Applicable for RDBMS only. {forward-only, scroll-sensitive, scroll-
insensitive}

datanucleus.rdbms.que
ry.resultSetConcurrenc
y

Whether the ResultSet is readonly or can be updated. Not all JDBC drivers
support all options. The values correspond directly to the ResultSet
options. Applicable for RDBMS only {read-only, updateable}

datanucleus.rdbms.que
ry.multivaluedFetch

How any multi-valued field should be fetched in a query. 'exists' means
use an EXISTS statement hence retrieving all elements for the queried
objects in one SQL with EXISTS to select the affected owner objects. 'none'
means don’t fetch container elements. Applicable for RDBMS only
{exists, none}

datanucleus.rdbms.ora
cle.nlsSortOrder

Sort order for Oracle String fields in queries (BINARY disables native
language sorting). Applicable to Oracle only {LATIN, See Oracle
documentation}

datanucleus.rdbms.mys
ql.engineType

Specify the default engine for any tables created in MySQL. Applicable to
MySQL only. {InnoDB, valid engine for MySQL}

datanucleus.rdbms.mys
ql.collation

Specify the default collation for any tables created in MySQL. Applicable
to MySQL only

datanucleus.rdbms.mys
ql.characterSet

Specify the default charset for any tables created in MySQL. Applicable
to MySQL only

datanucleus.rdbms.info
rmix.useSerialForIdenti
ty

Whether we are using SERIAL for identity columns (instead of SERIAL8).
Applicable to Informix only. {true, false}

datanucleus.rdbms.dyn
amicSchemaUpdates

Whether to allow dynamic updates to the schema. This means that upon
each insert/update the types of objects will be tested and any previously
unknown implementations of interfaces will be added to the existing
schema. Applicable for RDBMS only {true, false}

datanucleus.rdbms.omi
tDatabaseMetaDataGet
Columns

Whether to bypass all calls to DatabaseMetaData.getColumns(). This JDBC
method is called to get schema information, but on some JDBC drivers (e.g
Derby) it can take an inordinate amout of time. Setting this to true means
that your datastore schema has to be correct and no checks will be
performed. Applicable for RDBMS only. {true, false}

datanucleus.rdbms.sqlT
ableNamingStrategy

Name of the plugin to use for defining the names of the aliases of tables
in SQL statements. Applicable for RDBMS only {alpha-scheme, t-
scheme}

datanucleus.rdbms.tabl
eColumnOrder

How we should order the columns in a table. The default is to put the
fields of the owning class first, followed by superclasses, then subclasses.
An alternative is to start from the base superclass first, working down to
the owner, then the subclasses Applicable for RDBMS only. {owner-
first, superclass-first}

24

Parameter Description + Values

datanucleus.rdbms.allo
wColumnReuse

This property allows you to reuse columns for more than 1 field of a
class. It is false by default to protect the user from erroneously typing in a
column name. Additionally, if a column is reused, the user ought to think
about how to determine which field is written to that column … all reuse
ought to imply the same value in those fields so it doesn’t matter which
field is written there, or retrieved from there. Applicable for RDBMS
only {true, false}

datanucleus.rdbms.stat
ementLogging

How to log SQL statements. The default is to log the statement and
replace any parameters with the value provided in angle brackets.
Alternatively you can log the statement with any parameters replaced by
just the values (no brackets). The final option is to log the raw JDBC
statement (with ? for parameters). Applicable for RDBMS only {values-
in-brackets, values, jdbc}

datanucleus.rdbms.fetc
hUnloadedAutomaticall
y

If enabled will, upon a request to load a field, check for any unloaded
fields that are non-relation fields or 1-1/N-1 fields and will load them in
the same SQL call. Applicable for RDBMS only {true, false}

datanucleus.cloud.stora
ge.bucket

This is a mandatory property that allows you to supply the bucket name
to store your data. Applicable for Google Storage, and AmazonS3 only.

datanucleus.hbase.relat
ionUsesPersistableId

This defines how relations will be persisted. The legacy method would be
just to store the "id" of the object. The default method is to use
"persistableId" which is a form of the id but catering for datastore id and
application id, and including the class of the target object to avoid
subsequent lookups. Applicable for HBase only. {true, false}

datanucleus.hbase.enfo
rceUniquenessInApplic
ation

Setting this property to true means that when a new object is persisted
(and its identity is assigned), no check will be made as to whether it exists
in the datastore and that the user takes responsibility for such checks.
Applicable for HBase only. {true, false}

datanucleus.cassandra.
enforceUniquenessInA
pplication

Setting this property to true means that when a new object is persisted
(and its identity is assigned), no check will be made as to whether it exists
in the datastore (since Cassandra does an UPSERT) and that the user takes
responsibility for such checks. Applicable for Cassandra only. {true,
false}

datanucleus.cassandra.
compression

Type of compression to use for the Cassandra cluster. Applicable for
Cassandra only. {none, snappy}

datanucleus.cassandra.
metrics

Whether metrics are enabled for the Cassandra cluster. Applicable for
Cassandra only. {true, false}

datanucleus.cassandra.
ssl

Whether SSL is enabled for the Cassandra cluster. Applicable for
Cassandra only. {true, false}

datanucleus.cassandra.
socket.readTimeoutMill
is

Socket read timeout for the Cassandra cluster. Applicable for Cassandra
only.

25

Parameter Description + Values

datanucleus.cassandra.
socket.connectTimeout
Millis

Socket connect timeout for the Cassandra cluster. Applicable for
Cassandra only.

DataNucleus EMF Properties

DataNucleus provides the following properties for configuring EMF capabilities.

Parameter Description + Values

datanucleus.jpa.addCla
ssTransformer

When running with JPA in a JavaEE environment if you wish to have
your classes enhanced at runtime you can enable this by setting this
property to true. The default is to bytecode enhance your classes before
deployment. {false, true}

datanucleus.jpa.persist
enceContextType

JPA defines two lifecycle options. JavaEE usage defaults to "transaction"
where objects are detached when a transaction is committed. JavaSE
usage defaults to "extended" where objects are detached when the
EntityManager is closed. This property allows control {transaction,
extended}

datanucleus.jpa.txnMar
kForRollbackOnExcepti
on

JPA requires that any persistence exception should mark the current
transaction for rollback. This persistence property allows that inflexible
behaviour to be turned off leaving it to the user to decide when a
transaction is needing to be rolled back. {true, false}

Closing EntityManagerFactory
Since the EMF has significant resources associated with it, it should always be closed when you no
longer need to perform any more persistence operations. For most operations this will be when
closing your application. Whenever it is you do it like this

emf.close();

Level 2 Cache
The EntityManagerFactory has an optional cache of all objects across all _EntityManager_s. This
cache is called the Level 2 (L2) cache, and JPA doesn’t define whether this should be enabled or
not. With DataNucleus it defaults to enabled. The user can configure the L2 cache if they so wish; by
use of the persistence property datanucleus.cache.level2.type. You set this to "type" of cache
required. You currently have the following options.

• soft - use the internal (soft reference based) L2 cache. This is the default L2 cache in
DataNucleus. Provides support for the JPA interface of being able to put objects into the cache,
and evict them when required. This option does not support distributed caching, solely running

26

within the JVM of the client application. Soft references are held to non pinned objects.

• weak - use the internal (weak reference based) L2 cache. Provides support for the JPA interface
of being able to put objects into the cache, and evict them when required. This option does not
support distributed caching, solely running within the JVM of the client application. Weak
references are held to non pinned objects.

• javax.cache - a simple wrapper to the Java standard "javax.cache" Temporary Caching API.

• EHCache - a simple wrapper to EHCache’s caching product.

• EHCacheClassBased - similar to the EHCache option but class-based.

• Redis - a simple L2 cache using Redis.

• Oracle Coherence - a simple wrapper to Oracle’s Coherence caching product. Oracle’s caches
support distributed caching, so you could, in principle, use DataNucleus in a distributed
environment with this option.

• spymemcached - a simple wrapper to the "spymemcached" client for memcached caching
product.

• xmemcached - a simple wrapper to the "xmemcached" client for memcached caching product.

• cacheonix - a simple wrapper to the Cacheonix distributed caching software.

• OSCache - a simple wrapper to OSCache’s caching product.

• none - turn OFF L2 caching.

The weak, soft and javax.cache caches are available in the datanucleus-core plugin. The EHCache,
OSCache, Coherence, Cacheonix, and Memcache caches are available in the datanucleus-cache
plugin.

In addition you can control the mode of operation of the L2 cache. You do this using the persistence
property datanucleus.cache.level2.mode (or javax.persistence.sharedCache.mode). The default
is UNSPECIFIED which means that DataNucleus will cache all objects of entities unless the entity is
explicitly marked as not cacheable. The other options are NONE (don’t cache ever), ALL (cache all
entities regardless of annotations), ENABLE_SELECTIVE (cache entities explicitly marked as
cacheable), or DISABLE_SELECTIVE (cache entities unless explicitly marked as not cacheable - i.e
same as our default).

Objects are placed in the L2 cache when you commit() the transaction of a EntityManager. This
means that you only have datastore-persisted objects in that cache. Also, if an object is deleted
during a transaction then at commit it will be removed from the L2 cache if it is present.

 The L2 cache is a DataNucleus plugin point allowing you to provide your own cache
where you require it. Use the examples of the EHCache, Coherence caches etc as reference.

Controlling the Level 2 Cache

The majority of times when using a JPA-enabled system you will not have to take control over any
aspect of the caching other than specification of whether to use a L2 Cache or not. With JPA and
DataNucleus you have the ability to control which objects remain in the cache. This is available via
a method on the EntityManagerFactory.

27

#cache_level2_javax_cache
#cache_level2_ehcache
#cache_level2_ehcache
#cache_level2_redis
#cache_level2_coherence
#cache_level2_memcached
http://www.memcached.org
#cache_level2_memcached
http://www.memcached.org
#cache_level2_cacheonix
#cache_level2_oscache
http://github.com/datanucleus/datanucleus-cache
../extensions/extensions.html#cache_level2

EntityManagerFactory emf = Persistence.createEntityManagerFactory(persUnitName,
props);
Cache cache = emf.getCache();

The Cache interface provides methods to control the retention of objects in the cache. You have 2
types of methods

• contains - check if an object of a type with a particular identity is in the cache

• evict - used to remove objects from the Level 2 Cache

You can also control which classes are put into a Level 2 cache. So with the following JPA
annotation @Cacheable, no objects of type MyClass will be put in the L2 cache.

@Cacheable(false)
@Entity
public class MyClass
{
 ...
}

If you want to control which fields of an object are put in the Level 2 cache you can do this using an
extension annotation on the field. This setting is only required for fields that are relationships to
other persistable objects. Like this

public class MyClass
{
 ...

 Collection values;

 @Extension(vendorName="datanucleus", key="cacheable", value="false")
 Collection elements;
}

So in this example we will cache "values" but not "elements". If a field is cacheable then

• If it is a persistable object, the "identity" of the related object will be stored in the Level 2 cache
for this field of this object

• If it is a Collection of persistable elements, the "identity" of the elements will be stored in the
Level 2 cache for this field of this object

• If it is a Map of persistable keys/values, the "identity" of the keys/values will be stored in the
Level 2 cache for this field of this object

When pulling an object in from the Level 2 cache and it has a reference to another object
DataNucleus uses the "identity" to find that object in the Level 1 or Level 2 caches to re-relate the
objects.

28

L2 Cache using javax.cache

DataNucleus provides a simple wrapper to any compliant javax.cache implementation, for example
Apache Ignite or HazelCast. To enable this you should put a "javax.cache" implementation in your
CLASSPATH, and set the persistence properties

datanucleus.cache.level2.type=javax.cache
datanucleus.cache.level2.cacheName={cache name}

As an example, you could simply add the following to a Maven POM, together with those
persistence properties above to use HazelCast "javax.cache" implementation

<dependency>
 <groupId>javax.cache</groupId>
 <artifactId>cache-api</artifactId>
 <version>1.0.0</version>
</dependency>
<dependency>
 <groupId>com.hazelcast</groupId>
 <artifactId>hazelcast</artifactId>
 <version>3.7.3</version>
</dependency>

L2 Cache using EHCache

DataNucleus provides a simple wrapper to EHCache’s own API caches (not the javax.cache API
variant). To enable this you should set the persistence properties

datanucleus.cache.level2.type=ehcache
datanucleus.cache.level2.cacheName={cache name}
datanucleus.cache.level2.configurationFile={EHCache configuration file (in classpath)}

The EHCache plugin also provides an alternative L2 Cache that is class-based. To use this you would
need to replace "ehcache" above with "ehcacheclassbased".

L2 Cache using Spymemcached/Xmemcached

DataNucleus provides a simple wrapper to Spymemcached caches and Xmemcached caches. To
enable this you should set the persistence properties

datanucleus.cache.level2.type=spymemcached [or "xmemcached"]
datanucleus.cache.level2.cacheName={prefix for keys, to avoid clashes with other
memcached objects}
datanucleus.cache.level2.memcached.servers=...
datanucleus.cache.level2.expireMillis=...

29

http://jcp.org/en/jsr/detail?id=107
https://apacheignite.readme.io/
https://hazelcast.org/
http://www.sf.net/projects/ehcache
http://code.google.com/p/spymemcached/
http://code.google.com/p/xmemcached/

datanucleus.cache.level2.memcached.servers is a space separated list of memcached hosts/ports,
e.g. host:port host2:port. datanucleus.cache.level2.expireMillis if not set or set to 0 then no expire

L2 Cache using Cacheonix

DataNucleus provides a simple wrapper to Cacheonix. To enable this you should set the persistence
properties

datanucleus.cache.level2.type=cacheonix
datanucleus.cache.level2.cacheName={cache name}

Note that you can optionally also specify

datanucleus.cache.level2.expiryMillis={timeout-in-millis (default=60)}
datanucleus.cache.level2.configurationFile={Cacheonix configuration file (in
classpath)}

and define a cacheonix-config.xml like

30

http://www.memcached.org
http://www.cacheonix.com/

<?xml version="1.0"?>
<cacheonix>
 <local>
 <!-- One cache per class being stored. -->
 <localCache name="mydomain.MyClass">
 <store>
 <lru maxElements="1000" maxBytes="1mb"/>
 <expiration timeToLive="60s"/>
 </store>
 </localCache>

 <!-- Fallback cache for classes indeterminable from their id. -->
 <localCache name="datanucleus">
 <store>
 <lru maxElements="1000" maxBytes="10mb"/>
 <expiration timeToLive="60s"/>
 </store>
 </localCache>

 <localCache name="default" template="true">
 <store>
 <lru maxElements="10" maxBytes="10mb"/>
 <overflowToDisk maxOverflowBytes="1mb"/>
 <expiration timeToLive="1s"/>
 </store>
 </localCache>
 </local>

</cacheonix>

L2 Cache using Redis

DataNucleus provides a simple L2 cache using Redis. To enable this you should set the persistence
properties

datanucleus.cache.level2.type=redis
datanucleus.cache.level2.cacheName={cache name}
datanucleus.cache.level2.clearAtClose={true | false, whether to clear at close}
datanucleus.cache.level2.expireMillis=...
datanucleus.cache.level2.redis.database={database, or use the default '1'}
datanucleus.cache.level2.redis.timeout={optional cache timeout, or use the default of
5000}
datanucleus.cache.level2.redis.sentinels={comma-separated list of sentinels, optional
(use server/port instead)}
datanucleus.cache.level2.redis.server={server, or use the default of "localhost"}
datanucleus.cache.level2.redis.port={port, or use the default of 6379}

31

L2 Cache using OSCache

DataNucleus provides a simple wrapper to OSCache’s caches. To enable this you should set the
persistence properties

datanucleus.cache.level2.type=oscache
datanucleus.cache.level2.cacheName={cache name}

L2 Cache using Oracle Coherence

DataNucleus provides a simple wrapper to Oracle’s Coherence caches. This currently takes the
NamedCache interface in Coherence and instantiates a cache of a user provided name. To enabled
this you should set the following persistence properties

datanucleus.cache.level2.type=coherence
datanucleus.cache.level2.cacheName={coherence cache name}

The Coherence cache name is the name that you would normally put into a call to
CacheFactory.getCache(name). You have the benefits of Coherence’s distributed/serialized caching.
If you require more control over the Coherence cache whilst using it with DataNucleus, you can just
access the cache directly via

JPADataStoreCache cache = (JPADataStoreCache)emf.getCache();
NamedCache tangosolCache = ((TangosolLevel2Cache)cache.getLevel2Cache
()).getTangosolCache();

Level 2 Cache implementation

Objects in a Level 2 cache are keyed by their JPA "identity". Consequently only persistable objects
with an identity will be L2 cached. In terms of what is cached, the persistable object is represented
by a CachedPC object. This stores the class of the persistable object, the "id", "version" (if present),
and the field values (together with which fields are present in the L2 cache). If a field is/contains a
relation, the field value will be the "id" of the related object (rather than the object itself). If a field
is/contains an embedded persistable object, the field value will be a nested CachedPC object
representing that object.

32

http://www.opensymphony.com/oscache/
http://www.oracle.com/technology/products/coherence/index.html
https://github.com/datanucleus/datanucleus-core/blob/master/src/main/java/org/datanucleus/cache/CachedPC.java

Datastore Schema
Some datastores have a well-defined structure and when persisting/retrieving from these
datastores you have to have this schema in place. DataNucleus provides various controls for
creation of any necessary schema components. This creation can be performed as follows

• At runtime, as a one-off generate-schema step. This is the recommended option since it is
standard in JPA.

• One off task before running your application using SchemaTool

• At runtime, auto-generating tables as it requires them

The thing to remember when using DataNucleus is that the schema is under your control.
DataNucleus does not impose anything on you as such, and you have the power to turn on/off all
schema components. Some Java persistence tools add various types of information to the tables for
persisted classes, such as special columns, or meta information. DataNucleus is very unobtrusive as
far as the datastore schema is concerned. It minimises the addition of any implementation artifacts
to the datastore, and adds nothing (other than any datastore identities, and version columns where
requested) to any schema tables.

Schema Generation for persistence-unit
DataNucleus JPA allows you to generate the schema for your persistence-unit when creating an
EMF. You can create, drop or drop then create the schema either directly in the datastore, or in
scripts (DDL) as required. See the associated persistence properties (most of these only apply to
RDBMS).

• javax.persistence.schema-generation.database.action which can be set to create, drop, drop-
and-create or none to control the generation of the schema in the database.

• javax.persistence.schema-generation.scripts.action which can be set to create, drop, drop-
and-create or none to control the generation of the schema as scripts (DDL). See also
javax.persistence.schema-generation.scripts.create.target and javax.persistence.schema-
generation.scripts.drop.target which will be generated using this mode of operation.

• javax.persistence.schema-generation.scripts.create.target - this should be set to the name of
a DDL script file that will be generated when using javax.persistence.schema-
generation.scripts.action

• javax.persistence.schema-generation.scripts.drop.target - this should be set to the name of a
DDL script file that will be generated when using javax.persistence.schema-
generation.scripts.action

• javax.persistence.schema-generation.scripts.create.source - set this to an SQL script of your
own that will create some tables (prior to any schema generation from the persistable objects)

• javax.persistence.schema-generation.scripts.drop.source - set this to an SQL script of your
own that will drop some tables (prior to any schema generation from the persistable objects)

• javax.persistence.sql-load-script-source - set this to an SQL script of your own that will insert
any data that you require to be available when your EMF is initialised

33

#schema-generation
#schematool
#schema-autogeneration

Some examples.

To create a database using the JPA entities, and load data

javax.persistence.schema-generation.database.action=create
javax.persistence.sql-load-script-source=/usr/local/MyStartUp.sql

To create DDL for the JPA entities

javax.persistence.schema-generation.scripts.action=create
javax.persistence.schema-generation.scripts.create.target=/usr/local/CreateTables.ddl

Schema Auto-Generation at runtime

If you want to create the schema (tables + columns + constraints) during the persistence process, the
property datanucleus.schema.autoCreateAll provides a way of telling DataNucleus to do this. It’s
a shortcut to setting the other 3 properties to true. Thereafter, during calls to DataNucleus to persist
classes or performs queries of persisted data, whenever it encounters a new class to persist that it
has no information about, it will use the MetaData to check the datastore for presence of the "table",
and if it doesn’t exist, will create it. In addition it will validate the correctness of the table
(compared to the MetaData for the class), and any other constraints that it requires (to manage any
relationships). If any constraints are missing it will create them.

• If you wanted to only create the "tables" required, and none of the "constraints" the property
datanucleus.schema.autoCreateTables provides this, simply performing the tables part of the
above.

• If you want to create any missing "columns" that are required, the property
datanucleus.schema.autoCreateColumns provides this, validating and adding any missing
columns.

• If you wanted to only create the "constraints" required, and none of the "tables" the property
datanucleus.schema.autoCreateConstraints provides this, simply performing the
"constraints" part of the above.

• If you want to keep your schema fixed (i.e don’t allow any modifications at runtime) then make
sure that the properties datanucleus.schema.autoCreate{XXX} are set to false

Schema Generation : Validation

DataNucleus can check any existing schema against what is implied by the MetaData.

The property datanucleus.schema.validateTables provides a way of telling DataNucleus to
validate any tables that it needs against their current definition in the datastore. If the user already

34

has a schema, and want to make sure that their tables match what DataNucleus requires (from the
MetaData definition) they would set this property to true. This can be useful for example where you
are trying to map to an existing schema and want to verify that you’ve got the correct MetaData
definition.

The property datanucleus.schema.validateColumns provides a way of telling DataNucleus to
validate any columns of the tables that it needs against their current definition in the datastore. If
the user already has a schema, and want to make sure that their tables match what DataNucleus
requires (from the MetaData definition) they would set this property to true. This will validate the
precise column types and widths etc, including defaultability/nullability settings. Please be aware
that many JDBC drivers contain bugs that return incorrect column detail information and so
having this turned off is sometimes the only option (dependent on the JDBC driver quality).

The property datanucleus.schema.validateConstraints provides a way of telling DataNucleus to
validate any constraints (primary keys, foreign keys, indexes) that it needs against their current
definition in the datastore. If the user already has a schema, and want to make sure that their table
constraints match what DataNucleus requires (from the MetaData definition) they would set this
property to true.

Schema Generation : Naming Issues
Some datastores allow access to multiple "schemas" (such as with most RDBMS). DataNucleus will,
by default, use the "default" database schema for the Connection URL and user supplied. This may
cause issues where the user has been set up and in some databases (e.g Oracle) you want to write to
a different schema (which that user has access to). To achieve this in DataNucleus you would set the
persistence properties

datanucleus.mapping.Catalog={the_catalog_name}
datanucleus.mapping.Schema={the_schema_name}

This will mean that all RDBMS DDL and SQL statements will prefix table names with the necessary
catalog and schema names (specify which ones your datastore supports).

Some RDBMS do not support specification of both catalog and schema. For
example MySQL/MariaDB use catalog and not schema. You need to check what is
appropriate for your datastore.

The datastore will define what case of identifiers (table/column names) are accepted. By default,
DataNucleus will capitalise names (assuming that the datastore supports it). You can however
influence the case used for identifiers. This is specifiable with the persistence property
datanucleus.identifier.case, having the following values

• UpperCase: identifiers are in upper case

• lowercase: identifiers are in lower case

• MixedCase: No case changes are made to the name of the identifier provided by the user (class
name or metadata).

35

Some datastores only support UPPERCASE or lowercase identifiers and so setting
this parameter may have no effect if your database doesn’t support that option.

This case control only applies to DataNucleus-generated identifiers. If you
provide your own identifiers for things like schema/catalog etc then you need to
specify those using the case you wish to use in the datastore (including quoting as
necessary)

Schema Generation : Column Ordering
By default all tables are generated with columns in alphabetical order, starting with root class fields
followed by subclass fields (if present in the same table) etc. This is not part of JPA but DataNucleus
allows an extension to specify the relative position, such as

@ColumnPosition(3)

Note that the values of the position start at 0, and should be specified completely for all columns of
all fields.

Schema : Read-Only
If your datastore is read-only (you can’t add/update/delete any data in it), obviously you could just
configure your application to not perform these operations. An alternative is to set the EMF as read-
only, by setting the persistence property datanucleus.ReadOnlyDatastore to true.

From now on, whenever you perform a persistence operation that implies a change in datastore
data, the operation will throw a PersistenceException.

DataNucleus provides an additional control over the behaviour when an attempt is made to change
a read-only datastore. The default behaviour is to throw an exception. You can change this using
the persistence property datanucleus.readOnlyDatastoreAction with values of "EXCEPTION"
(default), and "IGNORE". "IGNORE" has the effect of simply ignoring all attempted updates to
readonly objects.

You can take this read-only control further and specify it just on specific classes. Like this

@Extension(vendorName="datanucleus", key="read-only", value="true")
public class MyClass {...}

SchemaTool

DataNucleus SchemaTool currently works with RDBMS, HBase, Excel, OOXML, ODF, MongoDB,
Cassandra datastores and is very simple to operate. It has the following modes of operation :

36

• createDatabase - create the specified database (catalog/schema) if the datastore supports that
operation.

• deleteDatabase - delete the specified database (catalog.schema) if the datastore supports that
operation.

• create - create all database tables required for the classes defined by the input data.

• delete - delete all database tables required for the classes defined by the input data.

• deletecreate - delete all database tables required for the classes defined by the input data, then
create the tables.

• validate - validate all database tables required for the classes defined by the input data.

• dbinfo - provide detailed information about the database, it’s limits and datatypes support.
Only for RDBMS currently.

• schemainfo - provide detailed information about the database schema. Only for RDBMS
currently.

In addition for RDBMS, the create/delete modes can be used by adding "-ddlFile {filename}" and
this will then not create/delete the schema, but instead output the DDL for the tables/constraints
into the specified file.

For the create, delete and validate modes DataNucleus SchemaTool accepts either of the following
types of input.

• A set of MetaData and class files. The MetaData files define the persistence of the classes they
contain. The class files are provided when the classes have annotations.

• The name of a persistence-unit. The persistence-unit name defines all classes, metadata files,
and jars that make up that unit. Consequently, running DataNucleus SchemaTool with a
persistence unit name will create the schema for all classes that are part of that unit.

if using SchemaTool with a persistence-unit make sure you omit
javax.persistence.schema-generation properties from your persistence-unit.

Here we provide many different ways to invoke DataNucleus SchemaTool

• Invoke it using Maven, with the DataNucleus Maven plugin

• Invoke it using Ant, using the provided DataNucleus SchemaTool Ant task

• Invoke it manually from the command line

• Invoke it using the DataNucleus Eclipse plugin

• Invoke it programmatically from within an application

SchemaTool using Maven

If you are using Maven to build your system, you will need the DataNucleus Maven plugin. This
provides 5 goals representing the different modes of DataNucleus SchemaTool. You can use the
goals datanucleus:schema-create, datanucleus:schema-delete, datanucleus:schema-validate
depending on whether you want to create, delete or validate the database tables. To use the

37

#persistenceunit
#schematool_maven
#schematool_ant
#schematool_manual
tools.html#eclipse
#schematool_programmatic

DataNucleus Maven plugin you will may need to set properties for the plugin (in your pom.xml). For
example

Property Default Description

api JDO API for the metadata being used (JDO, JPA). Set this to JPA

ignoreMetaDataForMis
singClasses

false Whether to ignore when we have metadata specified for
classes that aren’t found

catalogName Name of the catalog (mandatory when using createDatabase
or deleteDatabase options)

schemaName Name of the schema (mandatory when using createDatabase
or deleteDatabase options)

persistenceUnitName Name of the persistence-unit to generate the schema for
(defines the classes and the properties defining the
datastore). Mandatory

log4jConfiguration Config file location for Log4J (if using it)

jdkLogConfiguration Config file location for java.util.logging (if using it)

verbose false Verbose output?

fork true Whether to fork the SchemaTool process. Note that if you
don’t fork the process, DataNucleus will likely struggle to
determine class names from the input filenames, so you need
to use a persistence.xml file defining the class names directly.

ddlFile Name of an output file to dump any DDL to (for RDBMS)

completeDdl false Whether to generate DDL including things that already exist?
(for RDBMS)

So to give an example, I add the following to my pom.xml

38

<build>
 ...
 <plugins>
 <plugin>
 <groupId>org.datanucleus</groupId>
 <artifactId>datanucleus-maven-plugin</artifactId>
 <version>5.0.1</version>
 <configuration>
 <api>JPA</api>
 <persistenceUnitName>MyUnit</persistenceUnitName>
 <log4jConfiguration>${basedir}/log4j.properties</log4jConfiguration>
 <verbose>true</verbose>
 </configuration>
 </plugin>
 </plugins>
 ...
</build>

So with these properties when I run SchemaTool it uses properties from the file
datanucleus.properties at the root of the Maven project. I am also specifying a log4j configuration
file defining the logging for the SchemaTool process. I then can invoke any of the Maven goals

mvn datanucleus:schema-createdatabase Create the Database (catalog/schema)
mvn datanucleus:schema-deletedatabase Delete the Database (catalog/schema)
mvn datanucleus:schema-create Create the tables for the specified classes
mvn datanucleus:schema-delete Delete the tables for the specified classes
mvn datanucleus:schema-deletecreate Delete and create the tables for the
specified classes
mvn datanucleus:schema-validate Validate the tables for the specified
classes
mvn datanucleus:schema-info Output info for the Schema
mvn datanucleus:schema-dbinfo Output info for the datastore

Schematool using Ant

An Ant task is provided for using DataNucleus SchemaTool. It has classname
org.datanucleus.store.schema.SchemaToolTask, and accepts the following parameters

Parameter Description values

api API that we are using in our use of DataNucleus. Set
this to JPA typically

JDO, JPA

persistenceUnit Name of the persistence-unit that we should manage
the schema for (defines the classes and the properties
defining the datastore).

39

Parameter Description values

mode Mode of operation. create, delete,
validate, dbinfo,
schemainfo,
createDatabase,
deleteDatabase

catalogName Catalog name to use when used in createDatabase
/deleteDatabase modes

schemaName Schema name to use when used in createDatabase
/deleteDatabase modes

verbose Whether to give verbose output. true, false

ddlFile The filename where SchemaTool should output the
DDL (for RDBMS).

completeDdl Whether to output complete DDL (instead of just
missing tables). Only used with ddlFile

true, false

The SchemaTool task extends the Apache Ant Java task, thus all parameters available to the Java
task are also available to the SchemaTool task.

In addition to the parameters that the Ant task accepts, you will need to set up your CLASSPATH to
include the classes and MetaData files, and to define the following system properties via the
sysproperty parameter (not required when specifying the persistence props via the properties file,
or when providing the persistence-unit)

Parameter Description Optional

datanucleus.ConnectionUR
L

URL for the database

datanucleus.ConnectionUs
erName

User name for the database

datanucleus.ConnectionPas
sword

Password for the database

datanucleus.ConnectionDri
verName

Name of JDBC driver class

datanucleus.Mapping ORM Mapping name

log4j.configuration Log4J configuration file, for SchemaTool’s Log

So you could define something like the following, setting up the parameters schematool.classpath,
datanucleus.ConnectionURL, datanucleus.ConnectionUserName,
datanucleus.ConnectionPassword(, datanucleus.ConnectionDriverName) to suit your situation.

Schematool Command-Line Usage

If you wish to call DataNucleus SchemaTool manually, it can be called as follows

40

http://ant.apache.org/manual/Tasks/java.html

java [-cp classpath] [system_props] org.datanucleus.store.schema.SchemaTool [modes]
[options]
 where system_props (when specified) should include
 -Ddatanucleus.ConnectionURL=db_url
 -Ddatanucleus.ConnectionUserName=db_username
 -Ddatanucleus.ConnectionPassword=db_password
 -Dlog4j.configuration=file:{log4j.properties} (optional)
 where modes can be
 -createDatabase : create the specified database (if supported)
 -deleteDatabase : delete the specified database (if supported)
 -create : Create the tables specified by the mapping-files/class-files
 -delete : Delete the tables specified by the mapping-files/class-files
 -deletecreate : Delete the tables specified by the mapping-files/class-files
and then create them
 -validate : Validate the tables specified by the mapping-files/class-files
 -dbinfo : Detailed information about the database
 -schemainfo : Detailed information about the database schema
 where options can be
 -catalog {catalogName} : Catalog name when using
"createDatabase"/"deleteDatabase"
 -schema {schemaName} : Schema name when using
"createDatabase"/"deleteDatabase"
 -api : The API that is being used (default is JDO, but set this to JPA)
 -pu {persistence-unit-name} : Name of the persistence unit to manage the
schema for
 -ddlFile {filename} : RDBMS - only for use with "create"/"delete" mode to dump
the DDL to the specified file
 -completeDdl : RDBMS - when using "ddlFile" in "create" mode to get all DDL
output and not just missing tables/constraints
 -v : verbose output

All classes, MetaData files, persistence.xml files must be present in the CLASSPATH. In terms of
the schema to use, you either specify the "props" file (recommended), or you specify the System
properties defining the database connection, or the properties in the "persistence-unit". You should
only specify one of the modes above. Let’s make a specific example and see the output from
SchemaTool. So we have the following files in our application

src/java/... (source files and MetaData files)
target/classes/... (enhanced classes, and MetaData files)
lib/log4j.jar (optional, for Log4J logging)
lib/datanucleus-core.jar
lib/datanucleus-api-jpa.jar
lib/datanucleus-rdbms.jar, lib/datanucleus-hbase.jar, etc
lib/javax.persistence.jar
lib/mysql-connector-java.jar (driver for our database)
log4j.properties

So we want to create the schema for our persistent classes. So let’s invoke DataNucleus

41

SchemaTool to do this, from the top level of our project. In this example we’re using Linux (change
the CLASSPATH definition to suit for Windows)

java -cp target/classes:lib/log4j.jar:lib/datanucleus-core.jar:lib/datanucleus-
{datastore}.jar:lib/mysql-connector-java.jar
 -Dlog4j.configuration=file:log4j.properties
 org.datanucleus.store.schema.SchemaTool -create
 -api JPA -pu MyUnit

DataNucleus SchemaTool (version 5.0.0.release) : Creation of the schema

DataNucleus SchemaTool : Classpath
>> /home/andy/work/DataNucleus/samples/packofcards/target/classes
>> /home/andy/work/DataNucleus/samples/packofcards/lib/log4j.jar
>> /home/andy/work/DataNucleus/samples/packofcards/lib/datanucleus-core.jar
>> /home/andy/work/DataNucleus/samples/packofcards/lib/datanucleus-api-jpa.jar
>> /home/andy/work/DataNucleus/samples/packofcards/lib/javax.persistence.jar
>> /home/andy/work/DataNucleus/samples/packofcards/lib/datanucleus-rdbms.jar
>> /home/andy/work/DataNucleus/samples/packofcards/lib/mysql-connector-java.jar

DataNucleus SchemaTool : Persistence-Unit="MyUnit"

SchemaTool completed successfully

So as you see, DataNucleus SchemaTool prints out our input, the properties used, and finally a
success message. If an error occurs, then something will be printed to the screen, and more
information will be written to the log.

SchemaTool API

DataNucleus SchemaTool can also be called programmatically from an application. You need to get
hold of the StoreManager and cast it to SchemaAwareStoreManager. The API is shown below.

package org.datanucleus.store.schema;

public interface SchemaAwareStoreManager
{
 void createDatabase(String catalogName, String schemaName, Properties props);
 void deleteDatabase(String catalogName, String schemaName, Properties props);

 void createSchemaForClasses(Set<String> classNames, Properties props);
 void deleteSchemaForClasses(Set<String> classNames, Properties props);
 void validateSchemaForClasses(Set<String> classNames, Properties props);
}

So for example to create the schema for classes mydomain.A and mydomain.B you would do
something like this

42

EntityManagerFactory emf = Persistence.createEntityManagerFactory("MyUnit");
PersistenceNucleusContext nucCtx = emf.unwrap(PersistenceNucleusContext.class);
...
List classNames = new ArrayList();
classNames.add("mydomain.A");
classNames.add("mydomain.B");
try
{
 Properties props = new Properties();
 // Set any properties for schema generation
 ((SchemaAwareStoreManager)nucCtx.getStoreManager()).createSchemaForClasses
(classNames, props);
}
catch(Exception e)
{
 ...
}

Schema Adaption
As time goes by during the development of your DataNucleus JPA powered application you may
need to add fields, update field mappings, or delete fields. In an ideal world the JPA provider would
take care of this itself. However this is actually not part of the JPA standard and so you are reliant
on what features the JPA provider possesses.

DataNucleus can cope with added fields, if you have the relevant persistence properties enabled. In
this case look at datanucleus.schema.autoCreateTables,
datanucleus.schema.autoCreateColumns, datanucleus.schema.autoCreateConstraints, and
datanucleus.rdbms.dynamicSchemaUpdates (with this latter property of use where you have
interface field(s) and a new implementation of that interface is encountered at runtime).

If you update or delete a field with an RDBMS datastore then you will need to update your schema
manually. With non-RDBMS datastores deletion of fields is supported in some situations.

You should also consider making use of tools like Flyway and Liquibase since these are designed for
exactly this role.

RDBMS : Datastore Schema SPI

The JPA API doesn’t provide a way of accessing the schema of the datastore itself (if it has one). In
the case of RDBMS it is useful to be able to find out what columns there are in a table, or what data
types are supported for example. DataNucleus Access Platform provides an API for this.

The first thing to do is get your hands on the DataNucleus StoreManager and from that the
StoreSchemaHandler. You do this as follows

43

https://flywaydb.org/
http://www.liquibase.org/

import org.datanucleus.store.StoreManager;
import org.datanucleus.store.schema.StoreSchemaHandler;

...
StoreManager storeMgr = emf.unwrap(StoreManager.class);
StoreSchemaHandler schemaHandler = storeMgr.getSchemaHandler();

So now we have the StoreSchemaHandler what can we do with it? Well start with the javadoc for
the implementation that is used for RDBMS

RDBMS : Datastore Types Information

So we now want to find out what JDBC/SQL types are supported for our RDBMS. This is simple.

import org.datanucleus.store.rdbms.schema.RDBMSTypesInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();
RDBMSTypesInfo typesInfo = schemaHandler.getSchemaData(conn, "types");

As you can see from the javadocs for RDBMSTypesInfo we can access the JDBC types
information via the "children". They are keyed by the JDBC type number of the JDBC type (see
java.sql.Types). So we can just iterate it

Iterator jdbcTypesIter = typesInfo.getChildren().values().iterator();
while (jdbcTypesIter.hasNext())
{
 JDBCTypeInfo jdbcType = (JDBCTypeInfo)jdbcTypesIter.next();

 // Each JDBCTypeInfo contains SQLTypeInfo as its children, keyed by SQL name
 Iterator sqlTypesIter = jdbcType.getChildren().values().iterator();
 while (sqlTypesIter.hasNext())
 {
 SQLTypeInfo sqlType = (SQLTypeInfo)sqlTypesIter.next();
 ... inspect the SQL type info
 }
}

RDBMS : Column information for a table

Here we have a table in the datastore and want to find the columns present. So we do this

44

http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSSchemaHandler.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTypesInfo.html

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();
RDBMSTableInfo tableInfo = schemaHandler.getSchemaData(conn, "columns",
 new Object[] {catalogName, schemaName, tableName});

As you can see from the javadocs for RDBMSTableInfo we can access the columns
information via the "children".

Iterator columnsIter = tableInfo.getChildren().iterator();
while (columnsIter.hasNext())
{
 RDBMSColumnInfo colInfo = (RDBMSColumnInfo)columnsIter.next();

 ...
}

RDBMS : Index information for a table

Here we have a table in the datastore and want to find the indices present. So we do this

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();
RDBMSTableIndexInfo tableInfo = schemaHandler.getSchemaData(conn, "indices",
 new Object[] {catalogName, schemaName, tableName});

As you can see from the javadocs for RDBMSTableIndexInfo we can access the index
information via the "children".

Iterator indexIter = tableInfo.getChildren().iterator();
while (indexIter.hasNext())
{
 IndexInfo idxInfo = (IndexInfo)indexIter.next();

 ...
}

RDBMS : ForeignKey information for a table

Here we have a table in the datastore and want to find the FKs present. So we do this

45

http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableInfo.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableIndexInfo.htm

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();
RDBMSTableFKInfo tableInfo = schemaHandler.getSchemaData(conn, "foreign-keys",
 new Object[] {catalogName, schemaName, tableName});

As you can see from the javadocs for RDBMSTableFKInfo we can access the foreign-key
information via the "children".

Iterator fkIter = tableInfo.getChildren().iterator();
while (fkIter.hasNext())
{
 ForeignKeyInfo fkInfo = (ForeignKeyInfo)fkIter.next();

 ...
}

RDBMS : PrimaryKey information for a table

Here we have a table in the datastore and want to find the PK present. So we do this

import org.datanucleus.store.rdbms.schema.RDBMSTableInfo;

Connection conn = (Connection)pm.getDataStoreConnection().getNativeConnection();
RDBMSTablePKInfo tableInfo = schemaHandler.getSchemaData(conn, "primary-keys",
 new Object[] {catalogName, schemaName, tableName});

As you can see from the javadocs for RDBMSTablePKInfo we can access the foreign-key
information via the "children".

Iterator pkIter = tableInfo.getChildren().iterator();
while (pkIter.hasNext())
{
 PrimaryKeyInfo pkInfo = (PrimaryKeyInfo)pkIter.next();

 ...
}

46

http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTableFKInfo.html
http://www.datanucleus.org/javadocs/store.rdbms/latest/org/datanucleus/store/rdbms/schema/RDBMSTablePKInfo.html

EntityManager
Now that we have our EntityManagerFactory, providing the connection for our persistence-unit to
our datastore, we need to obtain an EntityManager (EM) to manage the persistence of objects. Here
we describe the majority of operations that you will are likely to need to know about.

An EntityManagerFactory is designed to be thread-safe. An EntityManager is not.
If you set the persistence property datanucleus.Multithreaded this acts as a hint
to the EMF to provide EntityManager(s) that are usable with multiple threads.
While DataNucleus makes efforts to make this EntityManager usable with
multiple threads, it is not guaranteed to work multi-threaded in all situations,
particularly around second class collection/map fields.

An EntityManager is cheap to create and it is a common pattern for web
applications to open an EntityManager per web request, and close it before the
response. Always close your EntityManager after you have finished with it.

To take an example, suppose we have the following (abbreviated) entities

@Entity
public class Person
{
 @Id
 long id;

 String firstName;
 String lastName;
}

@Entity
public class Account
{
 @Id
 long id;

 @OneToOne
 Person person;
}

Opening/Closing an EntityManager
You obtain an EntityManager from the EntityManagerFactory as follows

EntityManager em = emf.createEntityManager();

In the case of using container-managed JavaEE, you would instead obtain the EntityManager by

47

#emf
http://www.datanucleus.org/javadocs/javax.persistence/2.2/javax/persistence/EntityManager.html

injection

@PersistenceContext(unitName="myPU")
EntityManager em;

You then perform all operations that you need using this EntityManager and finally you must close
it. Forgetting to close it will lead to memory/resource leaks.

em.close();

In general you will be performing all operations on a EntityManager within a transaction, whether
your transactions are controlled by your JavaEE container, by a framework such as Spring, or by
locally defined transactions. In the examples below we will omit the transaction demarcation for
clarity.

Persisting an Object
The main thing that you will want to do with the data layer of a JPA-enabled application is persist
your objects into the datastore. As we mentioned earlier, a EntityManagerFactory represents the
datastore where the objects will be persisted. So you create a normal Java object in your
application, and you then persist this as follows

Person lincoln = new Person(1, "Abraham", "Lincoln");
em.persist(lincoln);

This will result in the object being persisted into the datastore, though clearly it will not be
persistent until you commit the transaction. The Lifecycle State of the object changes from
Transient to Persistent (after persist()), to Persistent/Detached (at commit).

Persisting multiple Objects in one call

When you want to persist multiple objects with standard JPA you have to call persist multiple times.
Fortunately DataNucleus extends this to take in a Collection or an array of entities, so you can do

Collection<Person> coll = new HashSet<>();
coll.add(lincoln);
coll.add(mandela);

em.persist(coll);

As above, the objects are persisted to the datastore. The Lifecycle State of the objects change from
Transient to Persistent (after persist()), to Persistent/Detached (at commit).

48

#transaction
#lifecycle
#lifecycle

Finding an object by its identity
Once you have persisted an object, it has an "identity". This is a unique way of identifying it. When
you specify the persistence for the entity you specified an id field (or fields, together with an
IdClass) so you can create the identity from that. So what ? Well the identity can be used to retrieve
the object again at some other part in your application. So you pass the identity into your
application, and the user clicks on some button on a web page and that button corresponds to a
particular object identity. You can then go back to your data layer and retrieve the object as follows

Person p = em.find(Person.class, 1);

which will try to retrieve the Person object with identity of 1. If there is no Person object with that
identity then it returns null.

the first argument could be a base class and the real object could be an instance
of a subclass of that.

the second argument is either the value of the single primary-key field (when it
has only one @Id field), or is the value of the object-id-class (when it has multiple
@Id fields).

if the second argument is not of the type expected for the @Id field then it will
throw an exception. You can enable DataNucleus built-in type conversion by
setting the persistence property datanucleus.findObject.typeConversion to
true.

Finding an object by its class and unique key field
value(s)

Whilst the primary way of looking up an object is via its identity, in some cases a class has a unique
key (maybe comprised of multiple field values). This is sometimes referred to as a natural id. This is
not part of the JPA API, however DataNucleus makes it available. Let’s take an example

49

@Entity
@Table(uniqueConstraints={@UniqueConstraint(columnNames={"firstName","lastName"})})
public class Person
{
 @Id
 long id;

 LocalDate dob;

 String firstName;

 String lastName;

 int age;

 ...
}

Here we have a Person class with an identity defined as a long, but also with a unique key defined as
the composite of the firstName and lastName (in most societies it is possible to duplicate names
amongst people, but we just take this as an example).

Now to access a Person object based on the firstName and lastName we do the following

JPAEntityManager jpaem = (JPAEntityManager)em;
Person p = jpaem.findByUnique(Person.class, {"firstName", "lastName"}, {"George",
"Jones"});

and we retrieve the Person "George Jones".

Deleting an Object
When you need to delete an object that you had previous persisted, deleting it is simple. Firstly you
need to get the object itself, and then delete it as follows

Person lincoln = em.find(Person.class, 1); // Retrieves the object to delete
em.remove(lincoln);

Deleting multiple Objects

When you want to delete multiple objects with standard JPA you have to call remove multiple times.
Fortunately DataNucleus extends this to take in a Collection or an array of entities, so you can do

50

Collection<Person> people = new HashSet<>();
people.add(lincoln);
people.add(mandela);
em.remove(people);

Modifying a persisted Object
To modify a previously persisted object you take the object and update it in your code. If the object
is in "detached" state (not managed by a particular EntityManager) then when you are ready to
persist the changes you do the following

Object updatedObj = em.merge(obj);

If however the object was already managed at the point of updating its fields, then

Person lincoln = em.find(Person.class, 1); // "lincoln" is now managed by "em", and in
"persistent" state.

lincoln.setAddress("The White House");

when the setAddress has been called, this is intercepted by DataNucleus, and the changes will be
stored for persisting. There is no need to call any EntityManager method to push the changes. This
is part of the mechanism known as transparent persistence.

Modifying multiple persisted Objects

When you want to attach multiple modified objects with standard JPA you have to call merge
multiple times. Fortunately DataNucleus extends this to take in a Collection or an array of entities,
so you can do

Object updatedObj = em.merge(coll);

Refreshing a persisted Object
An application that has sole access to the datastore, in general, does not need to check for updated
values from the datastore. In more complicated situations the datastore may be updated by another
application for example, so it may be necessary at times to check for more up-to-date values for the
fields of an entity. You do that like this

em.refresh(lincoln);

51

This will do the following

• Refresh all fields that are to be eagerly fetched from the datastore

• Unload all loaded fields that are to be lazily fetched.

If the object had any changes they will be thrown away by this step, and replaced by the latest
datastore values.

Getting EntityManager for an object

JPA doesn’t provide a method for getting the EntityManager of an object as such. Fortunately
DataNucleus provides the following

import org.datanucleus.api.jpa.NucleusJPAHelper;

...

EntityManager em = NucleusJPAHelper.getEntityManager(obj);

If you have an EntityManager object and want to check if it is managing a particular object you can
call

boolean managedByThisEM = em.contains(lincoln);

Cascading Operations
When you have relationships between entities, and you persist one entity, by default the related
entity will not be persisted. For each of the relation annotations @OneToOne, @OneToMany, @ManyToOne
and @ManyToMany there is an attribute cascade which defaults to null but you can control what
operations cascade (persist, remove, merge, detach, refresh).

Let’s use our example above, and create new Person and Account objects.

Person lincoln = new Person(1, "Abraham", "Lincoln");
Account acct1 = new Account(1, lincoln); // Second argument sets the relation between
the objects

now to persist them both we have two options. Firstly with the default cascade setting

em.persist(lincoln);
em.persist(acct1);

52

The second option is to set the metadata on Account as

@Entity
public class Account
{
 @Id
 long id;

 @OneToOne(cascade={CascadeType.PERSIST, CascadeType.MERGE})
 Person person;
}

now we can simply do this (since the Account has a reference to Person);

em.persist(acct1);

Orphans
When an element is removed from a collection, or when a 1-1 relation is nulled, sometimes it is
desirable to delete the other object. JPA defines a facility of removing "orphans" by specifying
metadata for a 1-1 or 1-N relation. Let’s take our example. In the above relation between Account
and Person if we set the "person" field to null, this should mean that the Person record is deleted. So
we could change the metadata to

@Entity
public class Account
{
 @Id
 long id;

 @OneToOne(cascade={CascadeType.PERSIST, CascadeType.MERGE}, `orphanRemoval`=true)
 Person person;
}

So from now on, if we delete the Account we delete the Person, and if we set the "person" field of
Account to null then we also delete the Person.

Managing Relationships
The power of a Java persistence solution like DataNucleus is demonstrated when persisting
relationships between objects. There are many types of relationships.

• 1-1 relationships - this is where you have an object A relates to a second object B. The relation
can be unidirectional where A knows about B, but B doesnt know about A. The relation can be
bidirectional where A knows about B and B knows about A.

53

mapping.html#one_one_relations

• 1-N relationships - this is where you have an object A that has a collection of other objects of
type B. The relation can be unidirectional where A knows about the objects B but the Bs dont
know about A. The relation can be bidirectional where A knows about the objects B and the Bs
know about A

• N-1 relationships - this is where you have an object B1 that relates to an object A, and an object
B2 that relates to A also etc. The relation can be unidirectional where the A doesnt know about
the Bs. The relation can be bidirectional where the A has a collection of the Bs. i.e a 1-N
relationship but from the point of view of the element.

• M-N relationships - this is where you have objects of type A that have a collection of objects of
type B and the objects of type B also have a collection of objects of type A. The relation is always
bidirectional by definition

• Derived Identity relationships when you have a relation and part of the primary key of the
related object is the other persistent object.

Assigning Relationships

When the relation is unidirectional you simply set the related field to refer to the other object. For
example we have classes A and B and the class A has a field of type B. So we set it like this

A a = new A();
B b = new B();
a.setB(b); // "a" knows about "b"

When the relation is bidirectional you have to set both sides of the relation. For example, we have
classes A and B and the class A has a collection of elements of type B, and B has a field of type A. So
we set it like this

A a = new A();
B b1 = new B();
a.addElement(b1); // "a" knows about "b1"
b1.setA(a); // "b1" knows about "a"

 With a bidirectional relation you must set both sides of the relation

Persisting Relationships - Reachability

To persist an object with JPA you call the EntityManager method persist (or merge if wanting to
update a detached object). The object passed in will be persisted. By default all related objects will
not be persisted with that object. You can however change this by specifying the cascade PERSIST
(and/or MERGE) property for that field. With this the related object(s) would also be persisted (or
updated with any new values if they are already persistent). This process is called persistence-by-
reachability. For example we have classes A and B and class A has a field of type B and this field
has the cascade property PERSIST set. To persist them we could do

54

mapping.html#one_many_relations
mapping.html#many_one_relations
mapping.html#many_many_relations
mapping.html#derived_identity

A a = new A();
B b = new B();
a.setB(b);
em.persist(a); // "a" and "b" are provisionally persistent

A further example where you don’t have the cascade PERSIST set, but still want to persist both ends
of a relation.

A a = new A();
B b = new B();
a.setB(b);
em.persist(a); // "a" is provisionally persistent
em.persist(b); // "b" is provisionally persistent

Managed Relationships

As we have mentioned above, it is for the user to set both sides of a bidirectional relation. If they
don’t and object A knows about B, but B doesnt know about A then what is the persistence solution
to do ? It doesn’t know which side of the relation is correct. JPA doesn’t define the behaviour for
this situation. DataNucleus has two ways of handling this situation. If you have the persistence
property datanucleus.manageRelationships set to true then it will make sure that the other side
of the relation is set correctly, correcting obvious omissions, and giving exceptions for obvious
errors. If you set that persistence property to false then it will assume that your objects have their
bidirectional relationships consistent and will just persist what it finds.

When performing management of relations there are some checks implemented
to spot typical errors in user operations e.g add an element to a collection and
then remove it (why?!). You can disable these checks using
datanucleus.manageRelationshipsChecks, set to false.

Transactions with lots of data
Occasionally you may need to persist large amounts of data in a single transaction. Since all objects
need to be present in Java memory at the same time, you can get OutOfMemory errors. You can
alleviate this by changing how you flush/commit the persistent changes. You can do it like this, for
example

55

EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
try
{
 tx.begin();
 for (int i=0; i<100000; i++)
 {
 Wardrobe wardrobe = new Wardrobe();
 wardrobe.setModel("3 doors");
 em.persist(wardrobe);
 if (i % 10000 == 0)
 {
 // Flush every 10000 objects
 em.flush();
 }
 }
 tx.commit();
}
finally
{
 if (tx.isActive())
 {
 tx.rollback();
 }
 em.close();
}

You can additionally consider evicting objects from the Level 1 Cache, since they will, by default, be
cached until commit.

Level 1 Cache
Each EntityManager maintains a cache of the objects that it has encountered (or have been
"enlisted") during its lifetime. This is termed the Level 1 (L1) Cache. It is enabled by default and
you should only ever disable it if you really know what you are doing. There are inbuilt types for
the L1 Cache available for selection. DataNucleus supports the following types of L1 Cache :-

• weak - uses a weak reference backing map. If JVM garbage collection clears the reference, then
the object is removed from the cache.

• soft - uses a soft reference backing map. If the map entry value object is not being actively used,
then garbage collection may garbage collect the reference, in which case the object is removed
from the cache.

• strong - uses a normal HashMap backing. With this option all references are strong meaning
that objects stay in the cache until they are explicitly removed by calling remove() on the cache.

You can specify the type of L1 Cache by providing the persistence property
datanucleus.cache.level1.type. You set this to the value of the type required. If you want to
remove all objects from the L1 cache programmatically you should use em.clear() but bear in mind

56

the other things that this will impact on.

Objects are placed in the L1 Cache (and updated there) during the course of the transaction. This
provides rapid access to the objects in use in the users application and is used to guarantee that
there is only one object with a particular identity at any one time for that EntityManager. When the
EntityManager is closed the cache is cleared.

 The L1 cache is a DataNucleus plugin point allowing you to provide your own cache
where you require it.

57

../extensions/extensions.html#cache_level1

Object Lifecycle
During the persistence process an object goes through lifecycle changes. Below we demonstrate the
primary object lifecycle changes for JPA. With JPA these lifecycles are referred to as "persistence
contexts". There are two : transaction (default for JavaEE usage) and extended (default for JavaSE
usage). DataNucleus allows control over which to use by specification of the persistence property
datanucleus.jpa.persistenceContextType.

Transaction PersistenceContext

A newly created object is transient. You then persist it and it becomes persistent. You then commit
the transaction and it is detached for use elsewhere in the application, in detached state. You then
attach any changes back to persistence and it becomes persistent again. Finally when you delete
the object from persistence and commit that transaction it is in transient state.

Extended PersistenceContext

So a newly created object is transient. You then persist it and it becomes persistent. You then
commit the transaction and it remains managed in persistent state. When you close the
EntityManager it becomes detached. Finally when you delete the object from persistence and
commit that transaction it is in transient state.

Detachment
When you detach an object (and its graph) either explicitly (using em.detach()) or implicitly via the
PersistenceContext above, you need to be careful about which fields are detached. If you detach
everything then you can end up with a huge graph that could impact on the performance of your
application. On the other hand you need to ensure that you have all fields that you will be needing
access to whilst detached. Should you access a field that was not detached an
IllegalAccessException is thrown. All fields that are loaded will be detached so make sure you
either load all required when retrieving the object using Entity Graphs or you access fields whilst

58

#entity_graphs

attached (which will load them).

Please note that some people interpret the JPA spec as implying that an object
which has a primary key field set to a value as being detached. DataNucleus does
not take this point of view, since the only way you can have a detached object is
to detach it from persistence (i.e it was once managed/attached). To reinforce our
view of things, what state is an object in which has a primitive primary key field ?
Using the logic above of these other people any object of such a class would be in
detached state (when not managed) since its PK is set. An object that has a PK
field set is transient unless it was detached from persistence. Note that you
can merge a transient object by setting the persistence property
datanucleus.allowAttachOfTransient to true.

DataNucleus does not use the "CascadeType.DETACH" flag explicitly, and instead
detaches the fields that are loaded (or marked for eager loading). In addition it
allows the user to make use of the FetchPlan extension for controlling the fine
details of what is loaded (and hence detached).

Helper Methods
JPA provides nothing to determine the lifecycle state of an object. Fortunately DataNucleus does
consider this useful, so you can call the following

String state = NucleusJPAHelper.getObjectState(entity);
boolean detached = NucleusJPAHelper.isDetached(entity);
boolean persistent = NucleusJPAHelper.isPersistent(entity);
boolean deleted = NucleusJPAHelper.isDeleted(entity);
boolean transactional = NucleusJPAHelper.isTransactional(entity);

When an object is detached it is often useful to know which fields are loaded/dirty. You can do this
with the following helper methods

Object[] detachedState = NucleusJPAHelper.getDetachedStateForObject(entity);
// detachedState[0] is the identity, detachedState[1] is the version when detached
// detachedState[2] is a BitSet for loaded fields
// detachedState[3] is a BitSet for dirty fields

String[] dirtyFieldNames = NucleusJPAHelper.getDirtyFields(entity, em);

String[] loadedFieldNames = NucleusJPAHelper.getLoadedFields(entity, em);

59

Transactions
Persistence operations performed by the EntityManager are typically managed in a transaction,
allowing operations to be grouped together. A Transaction forms a unit of work. The Transaction
manages what happens within that unit of work, and when an error occurs the Transaction can roll
back any changes performed. Transactions can be managed by the users application, or can be
managed by a framework (such as Spring), or can be managed by a JavaEE container. These are
described below.

• Local transactions : managed using the JPA Transaction API

• JTA transactions : managed using the JTA UserTransaction API

• Container-managed transactions : managed by a JavaEE environment

• Spring-managed transactions : managed by SpringFramework

• No transactions : "auto-commit" mode

• Controlling transaction isolation level

• Read-Only transactions

• Flushing a Transaction

• RDBMS : Savepoints

Locally-Managed Transactions
If using DataNucleus JPA in a JavaSE environment the normal type of transaction is
RESOURCE_LOCAL. With this type of transaction the user manages the transactions themselves,
starting, committing or rolling back the transaction. With these transactions with JPA you obtain an
EntityTransaction from the EntityManager, and manage it like this

EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
try
{
 tx.begin();

 {users code to persist objects}

 tx.commit();
}
finally
{
 if (tx.isActive())
 {
 tx.rollback();
 }
}
em.close();

60

#transaction_local
#transaction_jta
#transaction_container
#transaction_spring
#transaction_nontransactional
#transaction_isolation
#transaction_readonly
#transaction_flushing
#transaction_savepoint
http://www.datanucleus.org/javadocs/javax.persistence/2.2/javax/persistence/EntityTransaction.html

In this case you will have defined your persistence-unit to be like this

<persistence-unit name="MyUnit" transaction-type="RESOURCE_LOCAL">
 <properties>
 <property key="javax.persistence.jdbc.url" value="jdbc:mysql:..."/>
 ...
 </properties>
 ...
</persistence-unit>

or

<persistence-unit name="MyUnit" transaction-type="RESOURCE_LOCAL">
 <non-jta-data-source>java:comp/env/myDS</properties>
 ...
</persistence-unit>

The basic idea with Locally-Managed transactions is that you are managing the transaction start
and end.

JTA Transactions

Strict JPA does not support use of JTA transactions in a JavaSE environment.
DataNucleus does however allow JTA transactions in a JavaSE environment.

The other type of transaction with JPA is using JTA. With this type, where you have a JTA data
source from which you have a UserTransaction. This UserTransaction can have resources "joined"
to it. In the case of JPA, you have two scenarios. The first scenario is where you have the
UserTransaction created before you create your EntityManager. The create of the EntityManager
will automatically join it to the current UserTransaction, like this

61

#persistenceunit

UserTransaction ut = (UserTransaction)new InitialContext().lookup
("java:comp/UserTransaction");
ut.setTransactionTimeout(300);

EntityManager em = emf.createEntityManager();
try
{
 ut.begin();

 .. perform persistence/query operations

 ut.commit();
}
finally
{
 em.close();
}

so we control the transaction using the UserTransaction.

The second scenario is where the UserTransaction is started after you have the EntityManager. In
this case we need to join our EntityManager to the newly created UserTransaction, like this

EntityManager em = emf.createEntityManager();
try
{
 .. perform persistence, query operations

 UserTransaction ut = (UserTransaction)new InitialContext().lookup
("java:comp/UserTransaction");
 ut.setTransactionTimeout(300);
 ut.begin();

 // Join the EntityManager operations to this UserTransaction
 em.joinTransaction();

 // Commit the persistence/query operations performed above
 ut.commit();
}
finally
{
 em.close();
}

In the JTA case you will have defined your persistence-unit to be like this

62

#persistenceunit

<persistence-unit name="MyUnit" transaction-type="JTA">
 <jta-data-source>java:comp/env/myDS</properties>
 ...
</persistence-unit>

JTA TransactionManager

Note that the JavaEE spec does not define a standard way of finding the JTA TransactionManager,
and so all JavaEE containers have their own ways of handling this. DataNucleus provides a way of
scanning the various methods to find that appropriate for the JavaEE container in use, but you can
explicitly set the method of finding the TransactionManager, by use of the persistence properties
datanucleus.transaction.jta.transactionManagerLocator and, if using this property set to
custom_jndi then also datanucleus.transaction.jta.transactionManagerJNDI set to the JNDI
location that stores the TransactionManager instance.

Container-Managed Transactions
When using a JavaEE container you are giving over control of the transactions to the container.
Here you have Container-Managed Transactions. In terms of your code, you would do like the
above examples except that you would OMIT the tx.begin(), tx.commit(), tx.rollback() since the
JavaEE container will be doing this for you.

Spring-Managed Transactions
When you use a framework like Spring you would not need to specify the tx.begin(), tx.commit(),
tx.rollback() since that would be done for you.

No Transactions
DataNucleus allows the ability to operate without transactions. With JPA this is enabled by default
(see the 2 properties datanucleus.transaction.nontx.read, datanucleus.transaction.nontx.write
set to true, the default). This means that you can read objects and make updates outside of
transactions. This is effectively an "auto-commit" mode.

EntityManager em = emf.createEntityManager();

{users code to persist objects}

em.close();

When using non-transactional operations, you need to pay attention to the persistence property
datanucleus.transaction.nontx.atomic. If this is true then any persist/delete/update will be
committed to the datastore immediately. If this is false then any persist/delete/update will be
queued up until the next transaction (or em.close()) and committed with that.

63

http://www.springframework.org

Some other JPA providers do not provide this flexibility of non-transactional
handling, and indeed, if you try to do updates when outside a transaction these
changes are not committed even at em.close with those JPA providers. Fortunately
you’re using DataNucleus and it doesn’t have that problem.

Transaction Isolation

DataNucleus also allows specification of the transaction isolation level, applied at the connection
level, and providing a level of isolation of this process from other processed using the same
database. The isolation is specified via the persistence property
datanucleus.transaction.isolation. It accepts the standard JDBC values of

• read-uncommitted (1) : dirty reads, non-repeatable reads and phantom reads can occur

• read-committed (2) : dirty reads are prevented; non-repeatable reads and phantom reads can
occur. This is the default

• repeatable-read (4) : dirty reads and non-repeatable reads are prevented; phantom reads can
occur

• serializable (8) : dirty reads, non-repeatable reads and phantom reads are prevented

If the datastore doesn’t support a particular isolation level then it will silently be changed to one
that is supported. As an alternative you can also specify it on a per-transaction basis as follows

org.datanucleus.api.jpa.JPAEntityTransaction tx = (org.datanucleus.api.jpa
.JPAEntityTransaction)em.getTransaction();
tx.setOption("transaction.isolation", "read-committed");

Alternatively with numeric input (using numbers in parentheses above).

org.datanucleus.api.jpa.JPAEntityTransaction tx = (org.datanucleus.api.jpa
.JPAEntityTransaction)em.getTransaction();
tx.setOption("transaction.isolation", 2);

Read-Only Transactions
Obviously transactions are intended for committing changes. If you come across a situation where
you don’t want to commit anything under any circumstances you can mark the transaction as
"read-only" by calling

64

EntityManager em = emf.createEntityManager();
Transaction tx = em.getTransaction();
try
{
 tx.begin();
 tx.setRollbackOnly();

 {users code to persist objects}

 tx.rollback();
}
finally
{
 if (tx.isActive())
 {
 tx.rollback();
 }
}
em.close();

Any call to commit on the transaction will throw an exception forcing the user to roll it back.

Flushing
During a transaction, depending on the configuration, operations don’t necessarily go to the
datastore immediately, often waiting until commit. In some situations you need
persists/updates/deletes to be in the datastore so that subsequent operations can be performed that
rely on those being handled first. In this case you can flush all outstanding changes to the datastore
using

em.flush();

You can control the flush mode for an EntityManager using

em.setFlushMode(FlushModeType.COMMIT);

which will only flush changes at commit. This means that when a query is performed it will not see
any local changes.

The default is FlushModeType.AUTO which will flush just before any query, so that the results of all
queries are consistent with local changes.

A convenient vendor extension is to find which objects are waiting to be flushed at any time, like
this

65

List<ObjectProvider> objs = em.unwrap(ExecutionContext.class).getObjectsToBeFlushed();

Transaction Savepoints

 Applicable to RDBMS

JDBC provides the ability to specify a point in a transaction and rollback to that point if required,
assuming the JDBC driver supports it. DataNucleus provides this as a vendor extension, as follows

import org.datanucleus.api.jpa.JPAEntityTransaction;

EntityManager em = emf.createEntityManager();
JPAEntityTransaction tx = (JPAEntityTransaction)em.getTransaction();
try
{
 tx.begin();

 {users code to persist objects}
 tx.setSavepoint("Point1");

 {more user code to persist objects}
 tx.rollbackToSavepoint("Point1");

 tx.releaseSavepoint("Point1");
 tx.rollback();
}
finally
{
 if (tx.isActive())
 {
 tx.rollback();
 }
}
em.close();

66

Locking
Within a transaction it is very common to require some form of locking of objects so that you can
guarantee the integrity of data that is committed. There are the following locking types for a
transaction.

• Assume that things in the datastore will not change until they are ready to commit, not lock any
records and then just before committing make a check for changes. This is known as Optimistic
Locking.

• Lock specific records in a datastore and keep them locked until commit of the changes. These
are known as Pessimistic (or datastore) Locking.

Optimistic Locking
Optimistic "locking" is suitable for longer lived operations maybe where user interaction is taking
place and where it would be undesirable to block access to datastore entities for the duration of the
transaction. The assumption is that data altered in this transaction will not be updated by other
transactions during the duration of this transaction, so the changes are not propagated to the
datastore until commit()/flush(). The obvious benefit of optimistic locking is that all changes are
made in a block and version checking of objects is performed before application of changes, hence
this mode copes better with external processes updating the objects.

The (version of) data is checked when data is flushed (typically at commit) to ensure the integrity in
this respect. The most convenient way of checking data for updates is to maintain a column on each
table that handles optimistic locking data to store a version.

Rather than placing version columns on all user datastore tables, JPA allows the user to notate
particular classes as requiring optimistic treatment. This is performed by specifying in MetaData
(XML or annotations) the details of the field/column to use for storing the version - see versioning.
With strict JPA you must have a field in your class ready to store the version. With DataNucleus we
also allow a version to be stored in a surrogate column hence not requiring a field in the actual
class.

In terms of the process of optimistic locking, we demonstrate this below.

Operation DataNucleus process Datastore process

Start
transaction

Persist object Prepare object (1) for persistence

Update
object

Prepare object (2) for update

Persist object Prepare object (3) for persistence

Update
object

Prepare object (4) for update

67

#locking_optimistic
#locking_optimistic
#locking_pessimistic
mapping.html#versioning

Operation DataNucleus process Datastore process

Flush Flush all outstanding changes to the
datastore

* Open connection * Version check of
object (1) * Insert the object (1) in the
datastore. * Version check of object (2) *
Update the object (2) in the datastore. *
Version check of object (3) * Insert the
object (3) in the datastore. * Version
check of object (4) * Update the object (4)
in the datastore.

Perform
query

Generate query in datastore language Query the datastore and return selected
objects

Persist object Prepare object (5) for persistence

Update
object

Prepare object (6) for update

Commit
transaction

Flush all outstanding changes to the
datastore

* Version check of object (5) * Insert the
object (5) in the datastore * Version check
of object (6) * Update the object (6) in the
datastore. * Commit connection

We have our flush mode set to not commit until flush/commit is called (FlushModeType.AUTO).
When flush is performed (either manually, via commit, or via a query requiring it) the version
check(s) are performed for any modified objects to be flushed, as long as they have a version
defined. Please note that for some datastores (e.g RDBMS) the version check followed by
update/delete is performed in a single statement.

See also :-

• JPA MetaData reference for <version> element

• JPA Annotations reference for @Version

Pessimistic (Datastore) Locking
Pessimistic locking isn’t the default behaviour with JPA but can be configured. It is suitable for
short lived operations where no user interaction is taking place and so it is possible to block access
to datastore entities for the duration of the transaction. Such locking is best employed on specific
objects, rather as a global process applying to all retrieved objects.

To disable optimistic locking (or version checking) globally you would add the persistence property
datanucleus.Optimistic as false. Additionally, for RDBMS, to pessimistically lock ALL retrieved
objects you would also set the persistence property datanucleus.rdbms.useUpdateLock to true.

Any object that has a pessimistic lock will result in (for RDBMS) all "SELECT … FROM …" retrieval
statements being changed to be "SELECT … FROM … FOR UPDATE"; this will be applied only where
the underlying RDBMS supports the "FOR UPDATE" syntax.

With pessimistic locking DataNucleus will grab a datastore connection at the first operation, and
maintain it for the duration of the transaction. A single connection is used for the transaction (with

68

metadata_xml.html#version
annotations.html#Version

the exception of any Value Generation operations which need datastore access, so these can use
their own connection).

The JPA EntityManager allows control over locking on an object-by-object basis with several
methods. For example

Person person = em.find(Person.class, 1, LockModeType.PESSIMISTIC_READ);

will retrieve the Person object with identity 1, and will lock it until the end of the transaction.

You can additionally perform an explicit lock on a specific object like this

em.lock(person, LockModeType.PESSIMISTIC_READ);

which will lock the object from that point in the transaction.

If you wanted to lock all objects affected by a query, you can set the lock mode of the query, like this

Query q = em.createQuery("SELECT p FROM Person p WHERE p.lastName = 'Smith'");
q.setLockMode(LockModeType.PESSIMISTIC_READ);
List<Person> results = q.getResultList();

which will add a pessimistic lock on all Person objects with surname Smith.

In terms of the process of pessimistic (datastore) locking, we demonstrate this below. Here we have
disabled the default "optimistic" check process (using datanucleus.Optimistic being set to false).

Operation DataNucleus process Datastore process

Start
transaction

Persist object Prepare object (1) for persistence Open connection. Insert the object (1)
into the datastore

Update
object

Prepare object (2) for update Update the object (2) into the datastore

Persist object Prepare object (3) for persistence Insert the object (3) into the datastore

Update
object

Prepare object (4) for update Update the object (4) into the datastore

Flush No outstanding changes so do nothing

Perform
query

Generate query in datastore language Query the datastore and return selected
objects

Persist object Prepare object (5) for persistence Insert the object (5) into the datastore

69

mapping.html#value_generation

Operation DataNucleus process Datastore process

Update
object

Prepare object (6) for update Update the object (6) into the datastore

Commit
transaction

Commit connection

So here (due to the flush mode chosen, and due to the default optimistic locking being disabled),
whenever an operation is performed, DataNucleus pushes it straight to the datastore. Consequently
any queries will always reflect the current state of all objects in use. This mode of operation has no
version checking of objects and so, if they were updated by external processes in the meantime
then, they will overwrite those changes. This is where the locking statements for particular objects
is crucial, preventing them being updated externally.

One further thing to note is that you can have optimistic locking, whilst also having pessimistic
locking of specific objects. You achieve this by following the optimistic locking process above, but
using find and createQuery to lock specific objects using an appropriate pessimistic LockModeType.

It should be noted that DataNucleus provides two persistence properties that allow an amount of
control over when flushing happens with pessimistic locking

• datanucleus.flush.mode when set to MANUAL will try to delay all datastore operations until
commit/flush.

• datanucleus.datastoreTransactionFlushLimit represents the number of dirty objects before a
flush is performed. This defaults to 1.

70

Datastore Connections
DataNucleus utilises datastore connections as follows

• EMF : single connection at any one time for datastore-based value generation. Obtained just for
the operation, then released

• EMF : single connection at any one time for schema-generation. Obtained just for the operation,
then released

• EM : single connection at any one time. When in a transaction the connection is held from the
point of retrieval until the transaction commits or rolls back. The exact point at which the
connection is obtained is defined more fully below. When used for non-transactional operations
the connection is obtained just for the specific operation (unless configured to retain it).

If you are performing any schema generation at runtime then you must define a
secondary connection factory (via use of javax.persistence.jdbc.url, or via non-jta-
datasource).

If you have multiple threads using the same EntityManager then you can get
"ConnectionInUse" problems where another operation on another thread comes
in and tries to perform something while that first operation is still in use. This
happens because the JPA spec requires an implementation to use a single
datastore connection at any one time. When this situation crops up the user ought
to use multiple EntityManagers.

Another important aspect is use of queries for Optimistic transactions, or for non-transactional
contexts. In these situations it isn’t possible to keep the datastore connection open indefinitely and
so when the Query is executed the ResultSet is then read into memory making the queried objects
available thereafter.

Transactional Context
For pessimistic/datastore transactions a connection will be obtained from the datastore when the
first persistence operation is initiated. This datastore connection will be held for the duration of
the transaction until such time as either commit() or rollback() are called.

For optimistic transactions the connection is only obtained when flush()/commit() is called. When
flush() is called, or the transaction committed a datastore connection is finally obtained and it is
held open until commit/rollback completes. When a datastore operation is required, the connection
is typically released after performing that operation. So datastore connections, in general, are held
for much smaller periods of time. This is complicated slightly by use of the persistence property
datanucleus.IgnoreCache. When this is set to false, the connection, once obtained, is not released
until the call to commit()/rollback().

For Neo4j/MongoDB a single connection is used for the duration of the EM for all
transactional and nontransactional operations.

71

Nontransactional Context
When performing non-transactional operations, the default behaviour is to obtain a connection
when needed, and release it after use. With RDBMS you have the option of retaining this
connection ready for the next operation to save the time needed to obtain it; this is enabled by
setting the persistence property datanucleus.connection.nontx.releaseAfterUse to false.

For Neo4j/MongoDB a single connection is used for the duration of the EM for all
transactional and nontransactional operations.

User Connection
DataNucleus provides a mechanism for users to access the native connection to the datastore, so
that they can perform other operations as necessary. You obtain a connection as follows

// Obtain the connection from the JPA implementation
NucleusConnection ec = em.unwrap(NucleusConnection.class);
try
{
 Object native = conn.getNativeConnection();
 // Cast "native" to the required type for the datastore, see below

 ... use the connection to perform some operations.
}
finally
{
 // Hand the connection back to JPA
 conn.close();
}

For the datastores supported by DataNucleus, the "native" object is of the following types

• RDBMS : java.sql.Connection

• Excel : org.apache.poi.hssf.usermodel.HSSFWorkbook

• OOXML : org.apache.poi.hssf.usermodel.XSSFWorkbook

• ODF : org.odftoolkit.odfdom.doc.OdfDocument

• LDAP : javax.naming.ldap.LdapContext

• MongoDB : com.mongodb.DB

• XML : org.w3c.dom.Document

• Neo4j : org.neo4j.graphdb.GraphDatabaseService

• Cassandra : com.datastax.driver.core.Session

• HBase : NOT SUPPORTED

• JSON : NOT SUPPORTED

72

• NeoDatis : org.neodatis.odb.ODB

• GAE Datastore : com.google.appengine.api.datastore.DatastoreService

You must return the connection back to the EntityManager before performing
any EntityManager operation. You do this by calling conn.close(). If you don’t
return the connection and try to perform an EntityManager operation which
requires the connection then an exception is thrown.

Connection Pooling
When you create an EntityManagerFactory using the connection URL, driver name and the
username/password to use, this doesn’t necessarily pool the connections. For some of the supported
datastores DataNucleus allows you to utilise a connection pool to efficiently manage the
connections to the datastore. We currently provide support for the following

• RDBMS : Apache DBCP v2, we allow use of externally-defined DBCP2, but also provide a builtin
DBCP v2.1.1

• RDBMS : C3P0

• RDBMS : Proxool

• RDBMS : BoneCP

• RDBMS : HikariCP

• RDBMS : Tomcat

• RDBMS : Manually creating a DataSource for a 3rd party software package

• RDBMS : Custom Connection Pooling Plugins for RDBMS using the DataNucleus
ConnectionPoolFactory interface

• RDBMS : Using JNDI, and lookup a connection DataSource.

• LDAP : Using JNDI

You need to specify the persistence property datanucleus.connectionPoolingType to be
whichever of the external pooling libraries you wish to use (or "None" if you explicitly want no
pooling). DataNucleus provides two sets of connections to the datastore - one for transactional
usage, and one for non-transactional usage. If you want to define a different pooling for
nontransactional usage then you can also specify the persistence property
datanucleus.connectionPoolingType.nontx to whichever is required.

RDBMS : JDBC driver properties with connection pool

If using RDBMS and you have a JDBC driver that supports custom properties, you can still use
DataNucleus connection pooling and you need to s pecify the properties in with your normal
persistence properties, but add the prefix datanucleus.connectionPool.driver. to the property
name that the driver requires. For example, if an Oracle JDBC driver accepts defaultRowPrefetch,
then you would specify something like

73

#connection_pooling_rdbms_dbcp2
#connection_pooling_rdbms_c3p0
#connection_pooling_rdbms_proxool
#connection_pooling_rdbms_bonecp
#connection_pooling_rdbms_hikaricp
#connection_pooling_rdbms_tomcat
#connection_pooling_rdbms_manual
../extensions/extensions.html#rdbms_connectionpool
#connection_pooling_rdbms_jndi
#connection_pooling_ldap_jndi

datanucleus.connectionPool.driver.defaultRowPrefetch=50

and it will pass in defaultRowPrefetch as "50" into the driver used by the connection pool.

RDBMS : Apache DBCP v2+

DataNucleus provides a builtin version of DBCP2 to provide pooling. This is automatically selected
if using RDBMS, unless you specify otherwise. An alternative is to use an external DBCP2. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType to DBCP2 in
your persistence.xml.

So the EMF will use connection pooling using DBCP version 2. To do this you will need commons-
dbcp2, commons-pool2 JARs to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for DBCP2 are shown below

Pooling of Connections
datanucleus.connectionPool.maxIdle=10
datanucleus.connectionPool.minIdle=3
datanucleus.connectionPool.maxActive=5
datanucleus.connectionPool.maxWait=60

datanucleus.connectionPool.testSQL=SELECT 1

datanucleus.connectionPool.timeBetweenEvictionRunsMillis=2400000

RDBMS : C3P0

DataNucleus allows you to utilise a connection pool using C3P0 to efficiently manage the
connections to the datastore. C3P0 is a third-party library providing connection pooling. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType to C3P0 in
your persistence.xml.

So the EMF will use connection pooling using C3P0. To do this you will need the c3p0 JAR to be in the
CLASSPATH.

If you want to configure C3P0 further you can include a c3p0.properties in your CLASSPATH - see
the C3P0 documentation for details. You can also specify persistence properties to control the actual
pooling. The currently supported properties for C3P0 are shown below

74

http://jakarta.apache.org/commons/dbcp/
http://www.sf.net/projects/c3p0

Pooling of Connections
datanucleus.connectionPool.maxPoolSize=5
datanucleus.connectionPool.minPoolSize=3
datanucleus.connectionPool.initialPoolSize=3

Pooling of PreparedStatements
datanucleus.connectionPool.maxStatements=20

RDBMS : Proxool

DataNucleus allows you to utilise a connection pool using Proxool to efficiently manage the
connections to the datastore. Proxool is a third-party library providing connection pooling. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType to Proxool in
your persistence.xml.

So the EMF will use connection pooling using Proxool. To do this you will need the proxool and
commons-logging JARs to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for Proxool are shown below

datanucleus.connectionPool.maxConnections=10
datanucleus.connectionPool.testSQL=SELECT 1

RDBMS : BoneCP

DataNucleus allows you to utilise a connection pool using BoneCP to efficiently manage the
connections to the datastore. BoneCP is a third-party library providing connection pooling. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType to BoneCP in
your persistence.xml.

So the EMF will use connection pooling using BoneCP. To do this you will need the bonecp JAR (and
slf4j, google-collections) to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for BoneCP are shown below

Pooling of Connections
datanucleus.connectionPool.maxPoolSize=5
datanucleus.connectionPool.minPoolSize=3

Pooling of PreparedStatements
datanucleus.connectionPool.maxStatements=20

75

http://proxool.sourceforge.net/
http://www.jolbox.com

RDBMS : HikariCP

DataNucleus allows you to utilise a connection pool using HikariCP to efficiently manage the
connections to the datastore. HikariCP is a third-party library providing connection pooling. This is
accessed by specifying the persistence property datanucleus.connectionPoolingType to HikariCP
in your persistence.xml.

So the EMF will use connection pooling using HikariCP. To do this you will need the hikaricp JAR
(and slf4j, javassist as required) to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling. The currently supported
properties for HikariCP are shown below

Pooling of Connections
datanucleus.connectionPool.maxPoolSize=5
datanucleus.connectionPool.maxIdle=5
datanucleus.connectionPool.leakThreshold=1
datanucleus.connectionPool.maxLifetime=240

RDBMS : Tomcat

DataNucleus allows you to utilise a connection pool using Tomcat JDBC Pool to efficiently manage
the connections to the datastore. This is accessed by specifying the persistence property
datanucleus.connectionPoolingType to tomcat in your persistence.xml.

So the EMF will use a DataSource with connection pooling using Tomcat. To do this you will need
the tomcat-jdbc JAR to be in the CLASSPATH.

You can also specify persistence properties to control the actual pooling, like with the other pools.

RDBMS : Manually create a DataSource ConnectionFactory

We could have used the built-in DBCP2 support which internally creates a DataSource
ConnectionFactory, alternatively the support for external DBCP, C3P0, Proxool, BoneCP etc, however
we can also do this manually if we so wish. Let’s demonstrate how to do this with one of the most
used pools Apache Commons DBCP

With DBCP you need to generate a javax.sql.DataSource, which you will then pass to DataNucleus.
You do this as follows

76

https://github.com/brettwooldridge/HikariCP
http://commons.apache.org/dbcp

// Load the JDBC driver
Class.forName(dbDriver);

// Create the actual pool of connections
ObjectPool connectionPool = new GenericObjectPool(null);

// Create the factory to be used by the pool to create the connections
ConnectionFactory connectionFactory = new DriverManagerConnectionFactory(dbURL,
dbUser, dbPassword);

// Create a factory for caching the PreparedStatements
KeyedObjectPoolFactory kpf = new StackKeyedObjectPoolFactory(null, 20);

// Wrap the connections with pooled variants
PoolableConnectionFactory pcf =
 new PoolableConnectionFactory(connectionFactory, connectionPool, kpf, null, false,
true);

// Create the datasource
DataSource ds = new PoolingDataSource(connectionPool);

// Create our EMF
Map properties = new HashMap();
properties.put("datanucleus.ConnectionFactory", ds);
EntityManagerFactory emf = Persistence.createEntityManagerFactory("myPersistenceUnit",
properties);

Note that we haven’t passed the dbUser and dbPassword to the EMF since we no longer need to
specify them - they are defined for the pool so we let it do the work. As you also see, we set the data
source for the EMF. Thereafter we can sit back and enjoy the performance benefits. Please refer to
the documentation for DBCP for details of its configurability (you will need commons-dbcp, commons-
pool, and commons-collections in your CLASSPATH to use this above example).

RDBMS : Lookup a DataSource using JNDI

DataNucleus allows you to use connection pools (java.sql.DataSource) bound to a
javax.naming.InitialContext with a JNDI name. You first need to create the DataSource in the
container (application server/web server), and secondly you specify the jta-data-source in the
persistence-unit with the DataSource JNDI name. Please read more about this in RDBMS
DataSources.

LDAP : JNDI

If using an LDAP datastore you can use the following persistence properties to enable connection
pooling

datanucleus.connectionPoolingType=JNDI

77

#persistenceunit
#datasource
#datasource

Once you have turned connection pooling on if you want more control over the pooling you can
also set the following persistence properties

• datanucleus.connectionPool.maxPoolSize : max size of pool

• datanucleus.connectionPool.initialPoolSize : initial size of pool

Data Sources

 Applicable to RDBMS

DataNucleus allows use of a data source that represents the datastore in use. With JPA you specify
this typically as the JNDI name of the datasource location. This is often just a URL defining the
location of the datastore, but there are in fact several ways of specifying this data source depending
on the environment in which you are running.

• Nonmanaged Context - Java Client

• Managed Context - Servlet

• Managed Context - JavaEE

Java Client Environment : Non-managed Context

DataNucleus permits you to take advantage of using database connection pooling that is available
on an application server. The application server could be a full JEE server (e.g WebLogic) or could
equally be a servlet engine (e.g Tomcat, Jetty). Here we are in a non-managed context, and we use
the following properties when creating our EntityManagerFactory, and refer to the JNDI data
source of the server.

If the data source is available in WebLogic, the simplest way of using a data source outside the
application server is as follows.

Map ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL,"t3://localhost:7001");
Context ctx = new InitialContext(ht);
DataSource ds = (DataSource) ctx.lookup("jdbc/datanucleus");

Map properties = new HashMap();
properties.setProperty("datanucleus.ConnectionFactory",ds);
EntityManagerFactory emf = ...

If the data source is available in Websphere, the simplest way of using a data source outside the
application server is as follows.

78

#datasource_nonmanaged_client
#datasource_managed_servlet
#datasource_managed_javaee

Map ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,"com.ibm.websphere.naming.WsnInitialContextFact
ory");
ht.put(Context.PROVIDER_URL,"iiop://server:orb port");

Context ctx = new InitialContext(ht);
DataSource ds = (DataSource) ctx.lookup("jdbc/datanucleus");

Map properties = new HashMap();
properties.setProperty("datanucleus.ConnectionFactory",ds);
EntityManagerFactory emf = ...

Servlet Environment : Managed Context

As an example of setting up such a JNDI data source for Tomcat 5.0, here we would add the
following file to $TOMCAT/conf/Catalina/localhost/ as datanucleus.xml

79

<?xml version='1.0' encoding='utf-8'?>
<Context docBase="/home/datanucleus/" path="/datanucleus">
 <Resource name="jdbc/datanucleus" type="javax.sql.DataSource"/>
 <ResourceParams name="jdbc/datanucleus">
 <parameter>
 <name>maxWait</name>
 <value>5000</value>
 </parameter>
 <parameter>
 <name>maxActive</name>
 <value>20</value>
 </parameter>
 <parameter>
 <name>maxIdle</name>
 <value>2</value>
 </parameter>

 <parameter>
 <name>url</name>
 <value>jdbc:mysql://127.0.0.1:3306/datanucleus?autoReconnect=true</value>
 </parameter>
 <parameter>
 <name>driverClassName</name>
 <value>com.mysql.jdbc.Driver</value>
 </parameter>
 <parameter>
 <name>username</name>
 <value>mysql</value>
 </parameter>
 <parameter>
 <name>password</name>
 <value></value>
 </parameter>
 </ResourceParams>
</Context>

With this Tomcat JNDI data source we would then specify the data source (name) as
java:comp/env/jdbc/datanucleus.

Properties properties = new Properties();
properties.setProperty("javax.persistence.jtaDataSource","java:comp/env/jdbc/datanucle
us");
EntityManagerFactory emf = ...

JavaEE : Managed Context

As in the above example, we can also run in a managed context, in a JavaEE/Servlet environment,
and here we would make a minor change to the specification of the JNDI data source depending on

80

the application server or the scope of the jndi: global or component.

Using JNDI deployed in global environment:

Properties properties = new Properties();
properties.setProperty("javax.persistence.jtaDataSource","jdbc/datanucleus");
EntityManagerFactory emf = ...

Using JNDI deployed in component environment:

Properties properties = new Properties();
properties.setProperty("javax.persistence.jtaDataSource","java:comp/env/jdbc/datanucle
us");
EntityManagerFactory emf = ...

81

Multitenancy
On occasion you need to share a data model with other user-groups or other applications and
where the model is persisted to the same structure of datastore. There are three ways of handling
this with DataNucleus.

• Separate Database per Tenant - have a different database per user-group/application. In this
case you will have a separate EMF for each database, and manage use of the appropriate EMF
yourself.

• Separate Schema per Tenant - as the first option, except use different schemas. In this case you
will have a separate EMF for each database schema, and manage use of the appropriate EMF
yourself.

• Same Database/Schema but with a Discriminator in affected Table(s) - this is described
below. In this case you will have a single EMF, and DataNucleus will manage selecting
appropriate data for the tenant in question. This is described below.

Multitenancy via Discriminator in Table

 Applicable to RDBMS, HBase, MongoDB, Neo4j, Cassandra

If you specify the persistence property datanucleus.tenantId as an identifier for your user-
group/application then DataNucleus will know that it needs to provide a tenancy discriminator to
all primary tables of persisted classes. This discriminator is then used to separate the data of the
different user-groups.

By default this will add a column TENANT_ID to each primary table, of String-based type. You can
control this by specifying extension metadata for each persistable class

<class name="MyClass">
 <extension vendor-name="datanucleus" key="multitenancy-column-name"
value="TENANT"/>
 <extension vendor-name="datanucleus" key="multitenancy-column-length" value=
"24"/>
 ...
</class>

or using annotations

@Entity
@MultiTenant(column="TENANT", columnLength=24)
public class MyClass
{
 ...
}

82

In all subsequent use of DataNucleus, any "insert" to the primary "table"(s) will also include the
TENANT column value. Additionally any query will apply a WHERE clause restricting to a
particular value of TENANT column.

If you have enabled multi-tenancy as above but want to disable multitenancy on a class, just specify
the following metadata

<class name="MyClass">
 <extension vendor-name="datanucleus" key="multitenancy-disable" value="true"/>
 ...
</class>

or using annotations

@PersistenceCapable
@MultiTenant(disable=true)
public class MyClass
{
 ...
}

Note that the Tenant ID can be set in one of three ways.

• Per EntityManagerFactory : just set the persistence property datanucleus.tenantId when you
start up the EMF, and all access for this EMF will use this Tenant ID

• Per EntityManager : set the persistence property datanucleus.tenantId when you start up the
EMF as the default Tenant ID, and set a property on any EntityManager that you want a
different Tenant ID specifying for. Like this

EntityManager em = emf.createEntityManager();
... // All operations will apply to default tenant specified in persistence property
for EMF
em.close();

EntityManager em1 = emf.createEntityManager();
em1.setProperty("datanucleus.tenantId", "John");
... // All operations will apply to tenant "John"
em1.close();

EntityManager em2 = emf.createEntityManager();
em2.setProperty("datanucleus.tenantId", "Chris");
... // All operations will apply to tenant "Chris"
em2.close();

• Per datastore access : When creating the EMF set the persistence property
datanucleus.tenantProvider and set it to an instance of
org.datanucleus.store.schema.MultiTenancyProvider

83

http://www.datanucleus.org/javadocs/core/latest/org/datanucleus/store/schema/MultiTenancyProvider.html

public interface MultiTenancyProvider
{
 String getTenantId(ExecutionContext ec);
}

Now the programmer can set a different Tenant ID for each datastore access, maybe based on some
session variable for example?.

84

Bean Validation

 Support for BeanValidation includes all versions of that API (1.0, 1.1, 2.0).

The Bean Validation API (JSR0303/JSR0349/JSR0380) can be hooked up with JPA so that you have
validation of an objects values prior to persistence, update and deletion. To do this

• Put the javax.validation validation-api jar in your CLASSPATH, along with the Bean Validation
implementation jar of your choice (e.g Apache BVal)

• Set the persistence property javax.persistence.validation.mode to one of auto (default), none,
or callback

• Optionally set the persistence property(s) javax.persistence.validation.group.pre-persist,
javax.persistence.validation.group.pre-update, javax.persistence.validation.group.pre-
remove to fine tune the behaviour (the default is to run validation on pre-persist and pre-
update if you don’t specify these).

• Use JPA as you normally would for persisting objects

To give a simple example of what you can do with the Bean Validation API

@Entity
public class Person
{
 @Id
 @NotNull
 private Long id;

 @NotNull
 @Size(min = 3, max = 80)
 private String name;

 ...
}

So we are validating that instances of the Person class will have an "id" that is not null and that the
"name" field is not null and between 3 and 80 characters. If it doesn’t validate then at persist/update
an exception will be thrown. You can add bean validation annotations to classes marked as @Entity,
@MappedSuperclass or @Embeddable.

A further use of the Bean Validation annotations @Size(max=…) and @NotNull is that if you specify
these then you have no need to specify the equivalent JPA attributes since they equate to the same
thing. This is enabled via the persistence property
datanucleus.metadata.javaxValidationShortcuts.

85

http://beanvalidation.org/

Entity Graphs
When an object is retrieved from the datastore by JPA typically not all fields are retrieved
immediately. This is because for efficiency purposes only particular field types are retrieved in the
initial access of the object, and then any other objects are retrieved when accessed (lazy loading).
The group of fields that are loaded is called an entity graph. There are 3 types of "entity graphs" to
consider

• Default Entity Graph : implicitly defined in all JPA specs, specifying the fetch setting for each
field/property (LAZY/EAGER).

• Named Entity Graphs : a new feature in JPA 2.1 allowing the user to define Named Entity Graphs
in metadata, via annotations or XML

• Unnamed Entity Graphs : a new feature in JPA 2.1 allowing the user to define Entity Graphs via
the JPA API at runtime

Default Entity Graph
JPA provides an initial entity graph, comprising the fields that will be retrieved when an object is
retrieved if the user does nothing to define the required behaviour. You define this "default" by
setting the fetch attribute in metadata for each field/property.

Named Entity Graphs
You can predefine Named Entity Graphs in metadata which can then be used at runtime when
retrieving objects from the datastore (via find/query). For example, if we have the following class

class MyClass
{
 String name;
 Set coll;
 MyOtherClass other;
}

and we want to have the option of the other field loaded whenever we load objects of this class, we
define our annotations as

@Entity
@NamedEntityGraph(name="includeOther", attributeNodes={@NamedAttributeNode("other")})
public class MyClass
{
 ...
}

So we have defined an EntityGraph called "includeOther" that just includes the field with name
other. We can retrieve this and then use it in our persistence code, as follows

86

#entity_graphs_default
#entity_graphs_named
#entity_graphs_unnamed

EntityGraph includeOtherGraph = em.getEntityGraph("includeOther");

Properties props = new Properties();
props.put("javax.persistence.loadgraph", includeOtherGraph);
MyClass myObj = em.find(MyClass.class, id, props);

Here we have made use of the EntityManager.find method and provided the property
javax.persistence.loadgraph to be our EntityGraph. This means that it will fetch all fields in the
default EntityGraph, plus all fields in the includeOther EntityGraph. If we had provided the property
javax.persistence.fetchgraph set to our EntityGraph it would have fetched just the fields defined
in that EntityGraph.

Note that you can also make use of EntityGraphs when using the JPA Query API, specifying the same
properties above but as query hints.

Unnamed Entity Graphs
You can define Entity Graphs at runtime, programmatically. For example, if we have the following
class

class MyClass
{
 String name;
 HashSet coll;
 MyOtherClass other;
}

and we want to have the option of the other field loaded whenever we load objects of this class, we
do the following

EntityGraph includeOtherGraph = em.createEntityGraph(MyClass.class);
includeOtherGraph.addAttributeNodes("other");

So we have defined an EntityGraph that just includes the field with name other. We can then use
this at runtime in our persistence code, as follows

Properties props = new Properties();
props.put("javax.persistence.loadgraph", includeOtherGraph);
MyClass myObj = em.find(MyClass.class, id, props);

Here we have made use of the EntityManager.find method and provided the property
javax.persistence.loadgraph to be our EntityGraph. This means that it will fetch all fields in the
default EntityGraph, plus all fields in this EntityGraph. If we had provided the property
javax.persistence.fetchgraph set to our EntityGraph it would have fetched just the fields defined
in that EntityGraph.

87

query.html

Note that you can also make use of EntityGraphs when using the JPA Query API, specifying the same
properties above but as query hints, like this

EntityGraph<MyClass> eg = em.createEntityGraph(MyClass.class);
eg.addAttributeNodes("id");
eg.addAttributeNodes("name");
eg.addAttributeNodes("other");
Subgraph<MyOtherClass> myOtherClassGraph = eg.addSubgraph("other", MyOtherClass.
class);
myOtherClass.addAttributeNodes("name");

Query q = em.createQuery("SELECT m FROM MyClass m");
q.setHint("javax.persistence.fetchgraph", eg);
List<MyClass> results = q.getResultList();

88

query.html

Lifecycle Callbacks
JPA defines a mechanism whereby an Entity can be marked as a listener for lifecycle events.
Alternatively a separate entity listener class can be defined to receive these events. Thereafter
when entities of the particular class go through lifecycle changes events are passed to the provided
methods. Let’s look at the two different mechanisms

Entity Callbacks
An Entity itself can have several methods defined to receive events when any instances of that class
pass through lifecycles changes. Let’s take an example

@Entity
public class Account
{
 @Id
 Long accountId;

 Integer balance;
 boolean preferred;

 public Integer getBalance() { ... }

 @PrePersist
 protected void validateCreate()
 {
 if (getBalance() < MIN_REQUIRED_BALANCE)
 {
 throw new AccountException("Insufficient balance to open an account");
 }
 }

 @PostLoad
 protected void adjustPreferredStatus()
 {
 preferred = (getBalance() >= AccountManager.getPreferredStatusLevel());
 }
}

So in this example just before any "Account" object is persisted the validateCreate method will be
called. In the same way, just after the fields of any "Account" object are loaded the
adjustPreferredStatus method is called. Very simple.

You can register callbacks for the following lifecycle events

• PrePersist

• PostPersist

89

• PreRemove

• PostRemove

• PreUpdate

• PostUpdate

• PostLoad

The only other rule is that any method marked to be a callback method has to take no arguments as
input, and have void return.

Entity Listener
As an alternative to having the actual callback methods in the Entity class itself you can define a
separate class as an EntityListener. So lets take the example shown before and do it for an
EntityListener.

@Entity
@EntityListeners(mydomain.MyEntityListener.class)
public class Account
{
 @Id
 Long accountId;

 Integer balance;
 boolean preferred;

 public Integer getBalance() { ... }
}

package mydomain;

public class MyEntityListener
{
 @PostPersist
 public void newAccountAlert(Account acct)
 {
 ... do something when we get a new Account
 }
}

So we define our "Account" entity as normal but mark it with an EntityListener, and then in the
EntityListener we define the callbacks we require. As before we can define any of the 7 callbacks as
we require. The only difference is that the callback method has to take an argument of type "Object"
that it will be called for, and have void return.

 The Entity Listeners objects shown here are stateless.

90

DataNucleus allows for stateful event listener objects, with the state being CDI
injectable, but you must be in a CDI environment for this to work. To provide CDI
support for JPA, you should specify the persistence property
javax.persistence.bean.manager to be a CDI BeanManager object.

91

JavaEE Environments
JPA is designed to allow easy deployment into a JavaEE container. The JavaEE container takes care
of integration of the JPA implementation (DataNucleus), so there is no JCA connector required.

Key points to remember when deploying your JPA application to use DataNucleus under JavaEE

• Define a JTA datasource for your persistence operations

• Define a non-JTA datasource for your schema and sequence operations. These are cross-
EntityManager and so need their own datasource that is not affected by transactions.

Individual guides for specific JavaEE servers are listed below. If you have a guide for some other
server, please notify us and it will be added to this list.

JBoss AS7
This guide was provided by Nicolas Seyvet. It is linked to from the JBoss docs.

JBoss AS7 is a recent JavaEE server from JBoss. Despite searching in multiple locations, I could not
find a comprehensive guide on how to switch from the default JBoss Hibernate JPA provider to
Datanucleus (3). If you try this guide, please PM the author (or add a comment) and let me know
how it worked out. Your feedback will be used to improve this guide. This guide is cross-referenced
as part of the JBoss JPA Reference Guide.

Download JBoss AS 7 and DataNucleus 3.2+

JBoss : At the time I am writing this "How To", the latest JBoss AS available from the main JBoss
community site is 7.1.1.Final aka Brontes. In this guide, the latest 7.x SNAPSHOT was used but the
steps will work with any JBoss 7.x version.

DataNucleus : Version 4.0.0 was used, from SourceForge

Install JBoss AS 7

Install JBoss AS 7 by unzipping the downloaded JBoss zip file in the wanted folder to be used as the
JBoss home root folder (example: /local/jboss). From this point, the path where JBoss is unzipped
will be referred to as $JBOSS_HOME.

Note: JBoss AS 7 configuration is controlled by either standalone.xml

($JBOSS_HOME/standalone/configuration) or domain.xml ($JBOSS_HOME/domain/configuration)
depending on the operation mode (standalone or domain) of the application server. The domain
mode is typically used for cases where the AS is deployed in a cluster environment. In this tutorial,
a single AS instance is used, as such, the standalone mode is selected and all configuration changes
will be applied to the standalone.xml file.

Start JBoss

To start the server, use:

92

https://docs.jboss.org/author/display/AS72/JPA+Reference+Guide#JPAReferenceGuide-UsingDataNucleus
http://www.jboss.org/as7
http://www.jboss.org/as7
http://sourceforge.net/projects/datanucleus/files/datanucleus-accessplatform/

On Linux:

$ cd $JBOSS_HOME/bin/
$./standalone.sh

On Windows:

$ cd $JBOSS_HOME/bin/
$ standalone.bat

After a few seconds, a message should indicate the server is started.

17:23:00,251 INFO [org.jboss.as] (Controller Boot Thread) JBAS015874: JBoss AS
7.2.0.Alpha1-SNAPSHOT "Steropes" started
 in 3717ms - Started 198 of 257 services (56 services are passive or on-demand)

To verify, access the administration GUI located at http://localhost:9990/, and expect to see a
"Welcome to AS 7" banner. On the first start up, a console will show that an admin user must first
be created in order to be able to access the management UI. Follow the steps and create a user.

On Linux:

$JBOSS_HOME/bin$ add-user.sh

On Windows:

$JBOSS_HOME/bin$ add-user.bat

Add a JDBC DataSource (Optional)

This step is only necessary if an RDBMS solution is used as a data store, or if external drivers are
required. This tutorial will use MySQL as the RDBMS storage, and the required drivers and data
source will be added. For more information, about data sources under JBoss AS 7, refer to the JBoss
docs

Add MySQL drivers

For MySQL, it is recommended to use Connector/J, which can be found here. This tutorial uses
version 5.1.20.

JBoss uses OSGI to define a set of modules, further info about class loading in
JBoss. In short, the configuration files binds the services and the modules,
defining what is available in the class loader for a specific service or application.

While dropping the drivers in the $JBOSS_HOME/standalone/deployments directory works, this

93

http://localhost:9990/
https://community.jboss.org/wiki/DataSourceConfigurationInAS7
https://community.jboss.org/wiki/DataSourceConfigurationInAS7
http://dev.mysql.com/downloads/connector/j/
https://docs.jboss.org/author/display/AS71/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS71/Class+Loading+in+AS7

approach is not recommended. The proper approach is to add the drivers by defining a new
module containing the required libraries. The full instructions are available under here.

Short walk through for MySQL:

• Get the drivers

• create a "mysql" directory under $JBOSS_HOME/modules/com/

• create a "main" directory under $JBOSS_HOME/modules/com/mysql

• Copy the "mysql-connector-java-5.1.20-bin.jar" drivers under
$JBOSS_HOME/modules/com/mysql/main

• Add a module.xml file under $JBOSS_HOME/modules/com/mysql/main

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.mysql">
 <resources>
 <resource-root path="mysql-connector-java-5.1.20-bin.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 </dependencies>
</module>

The name is important as it defines the module name and is used in the standalone.xml
configuration file. Now, let’s say the URL to the MySQL database to be used is
"jdbc:mysql://localhost:3306/simple", there are three ways to add that to the server, either through
the management console at localhost or, by modifying the standalone.xml configuration file, or by
using the Command Line Interface (CLI).

Let’s modify the standalone.xml file. Verify the AS is stopped. Open standalone.xml for editing.
Search for "subsystem xmlns="urn:jboss:domain:datasources:1.1", the section defines data sources
and driver references. Let’s add our data source and drivers. Add the following in the datasources
section:

94

https://community.jboss.org/wiki/DataSourceConfigurationInAS7#Installing_a_JDBC_driver_as_a_module
http://localhost:9990/console/App.html#datasources
https://community.jboss.org/wiki/CommandLineInterface

<datasource jndi-name="java:/jdbc/simple" pool-name="MySQL-DS" enabled="true">
 <connection-url>jdbc:mysql://localhost:3306/simple</connection-url>
 <driver>com.mysql</driver>
 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>
 <pool>
 <min-pool-size>10</min-pool-size>
 <max-pool-size>100</max-pool-size>
 <prefill>true</prefill>
 </pool>
 <security>
 <user-name>[A valid DB user name]</user-name>
 <password>[A valid DB password]</password>
 </security>
 <statement>
 <prepared-statement-cache-size>32</prepared-statement-cache-size>
 <share-prepared-statements>true</share-prepared-statements>
 </statement>
</datasource>
<datasource jta="false" jndi-name="java:/jdbc/simple-nonjta" pool-name="MySQL-DS-
NonJTA" enabled="true">
 <connection-url>jdbc:mysql://localhost:3306/simple</connection-url>
 <driver>com.mysql</driver>
 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>
 <security>
 <user-name>[A valid DB user name]</user-name>
 <password>[A valid DB password]</password>
 </security>
 <statement>
 <share-prepared-statements>false</share-prepared-statements>
 </statement>
</datasource>

The above defines two data sources (MySQL-DS and MySQL-DS-NonJTA) referring to the same
database. The difference between the two is that MySQL-DS has JTA enabled while MySQL-DS-
NonJTA does not. This is useful to separate operations during the database automated schema
generation phase. Any change to a schema should be made outside the scope of JTA. Many JDBC
drivers (for example) will fall apart (assorted type of SQLException) if you try to commit a
connection with DDL and SQL mixed, or SQL first then DDL after. Consequently it is recommended
to have a separate data source for such operations, hence using the non-jta-data-source.

In the drivers section, add:

<driver name="com.mysql" module="com.mysql">
 <xa-datasource-class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</xa-
datasource-class>
</driver>

The above defines which drivers to use for the data sources MySQL-DS and MySQL-DS-NonJTA.

95

More info is available as part of the JBoss documentation, refer to the section describing how to
setup a new data source.

Add DataNucleus to JBoss

This step adds the DataNucleus libraries as a JBoss module.

• Create a directory to store the DataNucleus libraries, as
$JBOSS_HOME/modules/org/datanucleus/main

• Add the following jars from the lib directory of the datanucleus-accessplatform-full-deps ZIP file
lib directory : datanucleus-api-jpa-XXX.jar, datanucleus-core-XXX.jar, datanucleus-rdbms-

XXX.jar, datanucleus-jpa-query-XXX.jar

• Add a module.xml file in the $JBOSS_HOME/modules/org/datanucleus/main directory like this

<module xmlns="urn:jboss:module:1.1" name="org.datanucleus">
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.persistence.api"/>
 <module name="javax.transaction.api"/>
 <module name="javax.validation.api"/>
 </dependencies>
 <resources>
 <resource-root path="datanucleus-api-jpa-5.0.0.release.jar"/>
 <resource-root path="datanucleus-core-5.0.0.release.jar"/>
 <resource-root path="datanucleus-rdbms-5.0.0.release.jar"/>
 <resource-root path="datanucleus-jpa-query-5.0.0.release.jar"/>
 </resources>
</module>

At this point, all the JPA dependencies are resolved.

A simple example using DataNucleus JPA and JBoss AS7

Now you simply need to define persistence.xml and use JPA as you normally would. In order to use
DataNucleus as a persistence provider, the persistence.xml file must contain the
"jboss.as.jpa.providerModule" property. Using the datasources defined above, an example of a
persistence.xml file could be:

96

https://community.jboss.org/wiki/DataSourceConfigurationInAS7
https://community.jboss.org/wiki/DataSourceConfigurationInAS7

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">
 <persistence-unit name="[Persistence Unit Name]" transaction-type="JTA">
 <provider>org.datanucleus.api.jpa.PersistenceProviderImpl</provider>
 <!-- MySQL DS -->
 <jta-data-source>java:/jdbc/simple</jta-data-source>
 <non-jta-data-source>java:/jdbc/simple-nonjta</non-jta-data-source>

 <class>[Entities must be listed here]</class>

 <properties>
 <!-- Magic JBoss property for specifying the persistence provider -->
 <property name="jboss.as.jpa.providerModule" value="org.datanucleus"/>

 <!-- following is probably not useful... but it ensures we bind to the JTA
transaction manager...-->
 <property name="datanucleus.transaction.jta.transactionManagerLocator"
value="custom_jndi"/>
 <property name="datanucleus.transaction.jta.transactionManagerJNDI"
value="java:/TransactionManager"/>

 <property name="datanucleus.metadata.validate" value="false"/>
 <property name="datanucleus.schema.autoCreateAll" value="true"/>
 <property name="datanucleus.schema.validateTables" value="false"/>
 <property name="datanucleus.schema.validateConstraints" value="false"/>
 </properties>
 </persistence-unit>
</persistence>

TomEE
Apache TomEE ships with OpenJPA/EclipseLink as the default JPA provider (depending on which
version of TomEE), however any valid JPA provider can be used.

The basic steps are:

• Add the DataNucleus jars to <tomee-home>/lib/

• Configure the web-app or the server to use DataNucleus.

Webapp Configuration

Any web-app can specify the JPA provider it would like to use via the persistence.xml file, which
can be at any of the following locations in a web-app

• WEB-INF/persistence.xml of the .war file

• META-INF/persistence.xml in any jar located in WEB-INF/lib/

A single web-app may have many persistence.xml files and each may use whichever JPA provider it

97

needs. The following is an example of a fairly common persistence.xml for DataNucleus

<persistence version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd">
 <persistence-unit name="movie-unit">
 <provider>org.datanucleus.api.jpa.PersistenceProviderImpl</provider>
 <jta-data-source>movieDatabase</jta-data-source>
 <non-jta-data-source>movieDatabaseUnmanaged</non-jta-data-source>
 <properties>
 <property name="javax.persistence.schema-generation.database.action"
value="drop-and-create"/>
 </properties>
 </persistence-unit>
</persistence>

Note that you may have to set the persistence property
datanucleus.transaction.jta.transactionManagerLocator and
datanucleus.transaction.jta.transactionManagerJNDI to find your JTA "TransactionManager".
See the persistence properties for details of those.

Server Configuration

The default JPA provider can be changed at the server level to favour DataNucleus over
OpenJPA/EclipseLink. Using the <tomee-home>/conf/system.properties file or any other valid means
of setting java.lang.System.getProperties(), the following standard properties can set the default for
any persistence.xml file.

javax.persistence.provider
javax.persistence.transactionType
javax.persistence.jtaDataSource
javax.persistence.nonJtaDataSource

So, for example, DataNucleus can become the default provider via setting

CATALINA_OPTS=-
Djavax.persistence.provider=org.datanucleus.api.jpa.PersistenceProviderImpl

You must of course add the DataNucleus libraries to <tomee-home>/lib/ for this to work.

DataNucleus libraries

Jars needed for DataNucleus 5.1:

98

persistence.html#emf_properties

Add:
<tomee-home>/lib/datanucleus-core-5.1.8.jar
<tomee-home>/lib/datanucleus-api-jpa-5.1.5.jar
<tomee-home>/lib/datanucleus-rdbms-5.1.8.jar

Remove (optional):
<tomee-home>/lib/asm-3.2.jar
<tomee-home>/lib/commons-lang-2.6.jar
<tomee-home>/lib/openjpa-2.2.0.jar (or EclipseLink)
<tomee-home>/lib/serp-1.13.1.jar

99

OSGi Environments
DataNucleus jars are OSGi bundles, and as such, can be deployed in an OSGi environment. Being an
OSGi environment care must be taken with respect to class-loading. In particular the persistence
property datanucleus.primaryClassLoader will need setting.

An important thing to note : any dependent jar that is required by DataNucleus needs to be OSGi
enabled. By this we mean the jar needs to have the MANIFEST.MF file including ExportPackage for
the packages required by DataNucleus. Failure to have this will result in ClassNotFoundException
when trying to load its classes.

The javax.persistence jar that is included in the DataNucleus distribution is OSGi-enabled.

When using DataNucleus in an OSGi environment you can set the persistence property
datanucleus.plugin.pluginRegistryClassName to org.datanucleus.plugin.OSGiPluginRegistry.

JPA and OSGi
In a non OSGi world the persitence provider implementation is loaded using the service provider
pattern. The full qualified name of the implementation is stored in a file under META-
INF/services/javax.persistence.spi.PersistenceProvider (inside the jar of the implementation) and
each time the persistence provider is required it gets loaded with a Class.forName using the name
of the implementing class found inside the META-
INF/services/javax.persistence.spi.PersistenceProvider. In the OSGi world that doesn’t work. The
bundle that needs to load the persistence provider implementation cannot load META-

INF/services/javax.persistence.spi.PersistenceProvider. A work around is to copy that file inside
each bundle that requires access to the peristence provider. Another work around is to export the
persistence provider as OSGi service. This is what the DataNucleus JPA jar does.

Further reading available on this link

Sample using OSGi and JPA
Please make use of the OSGi sample. This provides a simple example that you can build and load
into such as Apache Karaf to demonstrate JPA persistence. Here we attempt to highlight the key
aspects specific to OSGi in this sample.

Model classes are written in the exact same way as you would for any application.

Creation of the EMF is specified in a persistence-unit as normal except that we need to provide two
overriding properties

100

http://jazoon.com/Portals/0/Content/slides/we_a7_1630-1650_ward.pdf
https://github.com/datanucleus/samples-jpa/tree/master/osgi_basic

Map<Object, Object> overrideProps = new HashMap();
overrideProps.put("datanucleus.primaryClassLoader", this.getClass().getClassLoader());
overrideProps.put("datanucleus.plugin.pluginRegistryClassName",
"org.datanucleus.plugin.OSGiPluginRegistry");

EntityManagerFactory emf = Persistence.createEntityManagerFactory("PU",
overrideProps);

so we have provided a class loader for the OSGi context of the application, and also specified that
we want to use the OSGiPluginRegistry.

All persistence and query operations using EntityManager etc thereafter are identical to what you
would use in a normal JavaSE/JavaEE application.

The pom.xml also defines the imports/exports for our OSGi application bundle, so look at this if
wanting guidance on what these could look like when using Maven and the "felix bundle" plugin.

If you read the file README.txt you can see basic instructions on how to deploy this application into
a fresh download of Apache Karaf, and run it. It makes uses of Spring DM to start the JPA
"application".

LocalContainerEntityManagerFactoryBean class for
use in Virgo 3.0 OSGi environment
When using DataNucleus 3.x in a Virgo 3.0.x OSGi environment, which is essentially Eclipse
Equinox + Spring dm Server with Spring 3.0.5.RELEASE included, the following class is working for
me to use in your Spring configuration. You can use this class as a drop-in replacement for Spring’s
org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean. It was inspired by the
code-ish sample at HOWTO Use Datanucleus with OSGi and Spring DM.

import java.util.HashMap;
import java.util.Map;

import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceException;
import javax.persistence.spi.PersistenceUnitInfo;

import org.datanucleus.util.StringUtils;
import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.osgi.context.BundleContextAware;

public class DataNucleusOsgiLocalContainerEntityManagerFactoryBean extends
 LocalContainerEntityManagerFactoryBean implements BundleContextAware
{

 public static final String DEFAULT_JPA_API_BUNDLE_SYMBOLIC_NAME =

101

../jdo/_persistence_osgi.html#springdm

"org.datanucleus.api.jpa";
 public static final String DEFAULT_PERSISTENCE_PROVIDER_CLASS_NAME =
"org.datanucleus.api.jpa.PersistenceProviderImpl";

 public static final String DEFAULT_OSGI_PLUGIN_REGISTRAR_CLASS_NAME =
"org.datanucleus.plugin.OSGiPluginRegistry";
 public static final String DEFAULT_OSGI_PLUGIN_REGISTRAR_PROPERTY_NAME =
"datanucleus.plugin.pluginRegistryClassName";

 protected BundleContext bundleContext;
 protected ClassLoader classLoader;

 protected String jpaApiBundleSymbolicName = DEFAULT_JPA_API_BUNDLE_SYMBOLIC_NAME;
 protected String persistenceProviderClassName =
DEFAULT_PERSISTENCE_PROVIDER_CLASS_NAME;
 protected String osgiPluginRegistrarClassName =
DEFAULT_OSGI_PLUGIN_REGISTRAR_CLASS_NAME;
 protected String osgiPluginRegistrarPropertyName =
DEFAULT_OSGI_PLUGIN_REGISTRAR_PROPERTY_NAME;

 @Override
 public void setBundleContext(BundleContext bundleContext) {
 this.bundleContext = bundleContext;
 }

 @Override
 protected EntityManagerFactory createNativeEntityManagerFactory() throws
PersistenceException
 {
 ClassLoader original = getBeanClassLoader(); // save for later
 try
 {
 if (bundleContext != null)
 {
 // default
 String name = getPersistenceProviderClassName();
 PersistenceUnitInfo info = getPersistenceUnitInfo();
 if (info != null && !StringUtils.isEmpty(info
.getPersistenceProviderClassName()))
 {
 // use class name of PU
 name = info.getPersistenceProviderClassName();
 }

 if (StringUtils.isEmpty(getJpaApiBundleSymbolicName()))
 {
 throw new IllegalStateException("no DataNucleus JPA API bundle
symbolic name given");
 }

 // set the bean class loader to use it so that Spring can find the

102

persistence provider class
 setBeanClassLoader(getBundleClassLoader(getJpaApiBundleSymbolicName(),
name));

 // since we're in an OSGi environment by virtue of the use of this
class, ensure a plugin registration mechanism is being used
 if (info == null || (info.getProperties() != null && !info
.getProperties().containsKey(getOsgiPluginRegistrarPropertyName())))
 {
 Map<String, Object> map = getJpaPropertyMap();
 map = map == null ? new HashMap<String, Object>() : map;
 if (map.get(getOsgiPluginRegistrarPropertyName()) == null) {
 map.put(getOsgiPluginRegistrarPropertyName(),
getOsgiPluginRegistrarClassName());
 }
 }
 }

 // now let Springy do its thingy
 return super.createNativeEntityManagerFactory();
 }
 finally
 {
 setBeanClassLoader(original); // revert bean classloader
 }
 }

 protected ClassLoader getBundleClassLoader(String bundleSymbolicName,String
classNameToLoad)
 {
 ClassLoader classloader = null;
 Bundle[] bundles = bundleContext.getBundles();
 for (int x = 0; x < bundles.length; x++)
 {
 if (bundleSymbolicName.equals(bundles[x].getSymbolicName())) {
 try
 {
 classloader = bundles[x].loadClass(classNameToLoad).
getClassLoader();
 }
 catch (ClassNotFoundException e)
 {
 e.printStackTrace();
 }
 break;
 }
 }
 return classloader;
 }

 public String getJpaApiBundleSymbolicName() {

103

 return jpaApiBundleSymbolicName;
 }

 public void setJpaApiBundleSymbolicName(String jpaApiBundleSymbolicName) {
 this.jpaApiBundleSymbolicName = jpaApiBundleSymbolicName;
 }

 public String getPersistenceProviderClassName() {
 return persistenceProviderClassName;
 }

 public void setPersistenceProviderClassName(String persistenceProviderClassName) {
 this.persistenceProviderClassName = persistenceProviderClassName;
 }

 public String getOsgiPluginRegistrarClassName() {
 return osgiPluginRegistrarClassName;
 }

 public void setOsgiPluginRegistrarClassName(String osgiPluginRegistrarClassName) {
 this.osgiPluginRegistrarClassName = osgiPluginRegistrarClassName;
 }

 public String getOsgiPluginRegistrarPropertyName() {
 return osgiPluginRegistrarPropertyName;
 }

 public void setOsgiPluginRegistrarPropertyName(String
osgiPluginRegistrarPropertyName) {
 this.osgiPluginRegistrarPropertyName = osgiPluginRegistrarPropertyName;
 }
}

104

Performance Tuning
DataNucleus, by default, provides certain functionality. In particular circumstances some of this
functionality may not be appropriate and it may be desirable to turn on or off particular features to
gain more performance for the application in question. This section contains a few common tips

Enhancement
You should perform enhancement before runtime. That is, do not use java agent since it will
enhance classes at runtime, when you want responsiveness from your application.

Schema
JPA provides properties for generating the schema at startup, and DataNucleus also provides some
of its own (datanucleus.schema.autoCreateAll, datanucleus.schema.autoCreateTables,
datanucleus.schema.autoCreateColumns, and datanucleus.schema.autoCreateConstraints).
This can cause performance issues at startup. We recommend setting these to false at runtime, and
instead using SchemaTool to generate any required database schema before running
DataNucleus (for RDBMS, HBase, etc).

Where you have an inheritance tree it is best to add a discriminator to the base class so that it’s
simple for DataNucleus to determine the class name for a particular row. For RDBMS : this results
in cleaner/simpler SQL which is faster to execute, otherwise it would be necessary to do a UNION of
all possible tables. For other datastores, a discriminator stores the key information necessary to
instantiate the resultant class on retrieval so ought to be more efficient also.

DataNucleus provides 3 persistence properties (datanucleus.schema.validateTables,
datanucleus.schema.validateConstraints, datanucleus.schema.validateColumns) that enforce
strict validation of the datastore tables against the Meta-Data defined tables. This can cause
performance issues at startup. In general this should be run only at schema generation, and should
be turned off for production usage. Set all of these properties to false. In addition there is a property
datanucleus.rdbms.CheckExistTablesOrViews which checks whether the tables/views that the
classes map onto are present in the datastore. This should be set to false if you require fast start-up.
Finally, the property datanucleus.rdbms.initializeColumnInfo determines whether the default
values for columns are loaded from the database. This property should be set to NONE to avoid
loading database metadata.

To sum up, the optimal settings with schema creation and validation disabled are:

105

persistence.html#schematool

#schema creation
datanucleus.schema.autoCreateAll=false
datanucleus.schema.autoCreateTables=false
datanucleus.schema.autoCreateColumns=false
datanucleus.schema.autoCreateConstraints=false

#schema validation
datanucleus.schema.validateTables=false
datanucleus.schema.validateConstraints=false
datanucleus.schema.validateColumns=false
datanucleus.rdbms.CheckExistTablesOrViews=false
datanucleus.rdbms.initializeColumnInfo=None

EntityManagerFactory usage
Creation of EntityManagerFactory objects can be expensive and should be kept to a minimum.
Depending on the structure of your application, use a single factory per datastore wherever
possible. Clearly if your application spans multiple servers then this may be impractical, but should
be borne in mind.

You can improve startup speed by not specifying all classes in the persistence-unit so that they are
discovered at runtime. Obviously this may impact on persistence operations later if classes are not
known about.

Some RDBMS (such as Oracle) have trouble returning information across multiple catalogs/schemas
and so, when DataNucleus starts up and tries to obtain information about the existing tables, it can
take some time. This is easily remedied by specifying the catalog/schema name to be used - either
for the EMF as a whole (using the persistence properties datanucleus.Catalog,
datanucleus.Schema, or using the settings in persistence.xml), or for the package/class using
attributes in the MetaData. This subsequently reduces the amount of information that the RDBMS
needs to search through and so can give significant speed ups when you have many
catalogs/schemas being managed by the RDBMS.

If you want to ensure that the schema existence checks are done for all
persistence-unit classes at startup you should set the persistence property
datanucleus.persistenceUnitLoadClasses to true. This processes all classes up
front, meaning that all operations from there on will run faster without
interruptions while it checks the database for existence of a table of a class.

EntityManager usage
Clearly the structure of your application will have a major influence on how you utilise an
EntityManager. A pattern that gives a clean definition of process is to use a different persistence
manager for each request to the data access layer. This reduces the risk of conflicts where one
thread performs an operation and this impacts on the successful completion of an operation being
performed by another thread. Creation of EM’s is not an expensive process and use of multiple
threads writing to the same manager should be avoided.

106

persistence.html#emf
persistence.html#em

Make sure that you always close the EntityManager after use. It releases all resources connected
to it, and failure to do so will result in memory leaks. Also note that when closing the
EntityManager if you have the persistence property datanucleus.detachOnClose set to true (when
in an extended PersistenceContext) this will detach all objects in the Level1 cache. Disable this if
you don’t need these objects to be detached, since it can be expensive when there are many objects.

Persistence Process
To optimise the persistence process for performance you need to analyse what operations are
performed and when, to see if there are some features that you could disable to get the persistence
you require and omit what is not required. If you think of a typical transaction, the following
describes the process

• Start the transaction

• Perform persistence operations. If you are using "optimistic" transactions then all datastore
operations will be delayed until commit. Otherwise all datastore operations will default to being
performed immediately. If you are handling a very large number of objects in the transaction
you would benefit by either disabling "optimistic" transactions, or alternatively setting the
persistence property datanucleus.flush.mode to AUTO, or alternatively, do a manual flush
every "n" objects, like this

for (int i=0;i<1000000;i++)
{
 if ((i%10000)/10000 == 0 && i != 0)
 {
 pm.flush();
 }
 ...
}

• Commit the transaction

• All dirty objects are flushed.

• Objects enlisted in the transaction are put in the Level 2 cache. You can disable the level 2
cache with the persistence property datanucleus.cache.level2.type set to none

• Objects enlisted in the transaction are detached if you have the persistence property
datanucleus.detachAllOnCommit set to true (when using a transactional
PersistenceContext). Disable this if you don’t need these objects to be detached at this point

Database Connection Pooling
DataNucleus, by default, will allocate connections when they are required. It then will close the
connection.

In addition, when it needs to perform something via JDBC (RDBMS datastores) it will allocate a
PreparedStatement, and then discard the statement after use. This can be inefficient relative to a

107

database connection and statement pooling facility such as Apache DBCP. With Apache DBCP a
Connection is allocated when required and then when it is closed the Connection isn’t actually
closed but just saved in a pool for the next request that comes in for a Connection. This saves the
time taken to establish a Connection and hence can give performance speed ups the order of maybe
30% or more. You can read about how to enable connection pooling with DataNucleus in the
Connection Pooling Guide.

As an addendum to the above, you could also turn on caching of PreparedStatements. This can also
give a performance boost, depending on your persistence code, the JDBC driver and the SQL being
issued. Look at the persistence property datanucleus.connectionPool.maxStatements.

Retrieval of object by identity
If you are retrieving an object by its identity and know that it will be present in the Level2 cache,
for example, you can set the persistence property datanucleus.findObject.validateWhenCached
to false and this will skip a separate call to the datastore to validate that the object exists in the
datastore.

Value Generators
DataNucleus provides a series of value generators for generation of identity values. These can have
an impact on the performance depending on the choice of generator, and also on the configuration
of the generator.

• The max strategy should not really be used for production since it makes a separate DB call for
each insertion of an object. Something like the TABLE strategy should be used instead. Better
still would be to choose AUTO and let DataNucleus decide for you.

• The SEQUENCE strategy allows configuration of the datastore sequence. The default can be non-
optimum. As a guide, you can try setting key-cache-size to 10

The AUTO identity generator value is the recommended choice since this will allow DataNucleus to
decide which identity generator is best for the datastore in use.

Collection/Map caching

DataNucleus has 2 ways of handling calls to SCO Collections/Maps. The original method was to pass
all calls through to the datastore. The second method (which is now the default) is to cache the
collection/map elements/keys/values. This second method will read the elements/keys/values once
only and thereafter use the internally cached values. This second method gives significant
performance gains relative to the original method. You can configure the handling of
collections/maps as follows :-

• Globally for the EMF - this is controlled by setting the persistence property
datanucleus.cache.collections. Set it to true for caching the collections (default), and false to
pass through to the datastore.

108

persistence.html#connection_pooling

• For the specific Collection/Map - this overrides the global setting and is controlled by adding a
MetaData <collection> or <map> extension cache. Set it to true to cache the collection data, and
false to pass through to the datastore.

The second method also allows a finer degree of control. This allows the use of lazy loading of data,
hence elements will only be loaded if they are needed. You can configure this as follows :-

• Globally for the EMF - this is controlled by setting the property
datanucleus.cache.collections.lazy. Set it to true to use lazy loading, and set it to false to load
the elements when the collection/map is initialised.

• For the specific Collection/Map - this overrides the global EMF setting and is controlled by
adding a MetaData <collection> or <map> extension cache-lazy-loading. Set it to true to use lazy
loading, and false to load once at initialisation.

NonTransactional Reads (Reading persistent objects
outside a transaction)
Performing non-transactional reads has advantages and disadvantages in performance and data
freshness in cache. The objects read are held cached by the EntityManager. The second time an
application requests the same objects from the EntityManager they are retrieved from cache. The
time spent reading the object from cache is minimum, but the objects may become stale and not
represent the database status. If fresh values need to be loaded from the database, then the user
application should first call refresh on the object.

Another disadvantage of performing non-transactional reads is that each operation realized opens
a new database connection, but it can be minimized with the use of connection pools, and also on
some of the datastore the (nontransactional) connection is retained.

Accessing fields of persistent objects when not
managed by a EntityManager
Reading fields of unmanaged objects (outside the scope of an EntityManager) is a trivial task, but
performed in a certain manner can determine the application performance. The objective here is
not give you an absolute response on the subject, but point out the benefits and drawbacks for the
many possible solutions.

• Use datanucleus.RetainValues=true. This is the default for JPA operation and will ensure that
after commit the fields of the object retain their values (rather than being nulled).

• Use detach method.

109

Object copy = null;
try
{
 EntityManager em = emf.createEntityManager();
 em.getTransaction().begin();

 //retrieve in some way the object, query, find, etc
 Object obj = em.find(MyClass.class, id);
 copy = em.detach(obj);

 em.getTransaction().commit();
}
finally
{
 em.close();
}
//read or change the detached object here
System.out.prinln(copy.getName());

• Use datanucleus.detachAllOnCommit=true. Dependent on the persistence context you may
automatically have this set.

Object obj = null;
try
{
 EntityManager pm = emf.createEntityManager();
 em.getTransaction().begin();

 //retrieve in some way the object, query, find, etc
 obj = em.find(MyClass.class, id);
 em.getTransaction().commit(); // Object "obj" is now detached
}
finally
{
 em.close();
}
//read or change the detached object here
System.out.prinln(obj.getName());

The bottom line is to not use detachment if instances will only be used to read values.

Fetch Control
When fetching objects you have control over what gets fetched. This can have an impact if you are
then detaching those objects. With JPA the maximum fetch depth is -1 (unlimited). So with JPA you
ought to set it to the extent that you want to detach, or better still make use of JPA Entity Graphs to
control the specific fields to detach.

110

persistence.html#entity_graphs

Logging
I/O consumes a huge slice of the total processing time. Therefore it is recommended to reduce or
disable logging in production. To disable the logging set the DataNucleus category to OFF in the
Log4j configuration. See Logging for more information.

log4j.category.DataNucleus=OFF

General Comments
In most applications, the performance of the persistence layer is very unlikely to be a bottleneck.
More likely the design of the datastore itself, and in particular its indices are more likely to have the
most impact, or alternatively network latency. That said, it is the DataNucleus projects' committed
aim to provide the best performance possible, though we also want to provide functionality, so
there is a compromise with respect to resource.

A benchmark is defined as "a series of persistence operations performing particular things e.g
persist n objects, or retrieve n objects". If those operations are representative of your application
then the benchmark is valid to you.

To find (or create) a benchmark appropriate to your project you need to determine the typical
persistence operations that your application will perform. Are you interested in persisting 100
objects at once, or 1 million, for example? Then when you have a benchmark appropriate for that
operation, compare the persistence solutions.

The performance tuning guide above gives a good oversight of tuning capabilities, and also refer to
the following blog entry for our take on performance of DataNucleus AccessPlatform. And then the
later blog entry about how to tune for bulk operations

Object-NoSQL Database Mappers: a benchmark study on the performance
overhead (Dec 2016)

This paper makes an attempt to compare several mappers for MongoDB, comparing with native
MongoDB usage. Key points to make are

• The study persists a flat class, with no relations. Hardly representative of a real world usage.

• The study doesn’t even touch on feature set available in each mapper, so the fact that
DataNucleus has a very wide range of mapping capabilities for MongoDB is ignored.

• All mappers come out as slower than native MongoDB (surprise!). The whole point of using a
mapper is that you don’t want to spend the time learning a new API, so are prepared for some
overhead.

• All timings quoted in their report are in the "microseconds" range!! as are differences between
the methods so very few real world applications would be impacted by the differences shown. If
anybody is choosing a persistence mechanism for pure speed, they should always go with the
native API; right tool for the job.

111

../logging.html
http://datanucleus.wordpress.com/2011/03/performance-benchmarking.html
http://datanucleus.wordpress.com/2013/02/performance-effect-of-various-features.html
https://jisajournal.springeropen.com/articles/10.1186/s13174-016-0052-x

• DataNucleus was configured to turn OFF query compilation caching, and L2 caching !!! whereas
not all other mappers provide a way to not cache such things, hence they have tied one arm
behind its back, and then commented that time taken to compile queries is impacting on
performance!

• Enhancement was done at RUNTIME!! so would impact on performance results. Not sure how
many times we need to say this in reference to benchmarking but clearly the message hasn’t got
through, or to quote the report "this may indicate fundamental flaws in the study’s measurement
methodology".

• This uses v5.0.0.M5. Not sure why each benchmark we come across wants to use some
milestone (used for DataNucleus) rather than a full release (what they did for all other
mappers). There have been changes to core performance since early 5.0

GeeCon JPA provider comparison (Jun 2012)

There is an interesting presentation on JPA provider performance that was presented at GeeCon
2012 by Patrycja Wegrzynowicz. This presentation takes the time to look at what operations the
persistence provider is performing, and does more than just "persist large number of flat objects
into a single table", and so gives you something more interesting to analyse. DataNucleus comes out
pretty well in many situations. You can also see the PDF here.

PolePosition (Dec 2008)

The PolePosition benchmark is a project on SourceForge to provide a benchmark of the write, read
and delete of different data structures using the various persistence tools on the market. JPOX
(DataNucleus predecessor) was run against this benchmark just before being renamed as
DataNucleus and the following conclusions about the benchmark were made.

• It is essential that tests for such as Hibernate and DataNucleus performance comparable things.
Some of the original tests had the "delete" simply doing a "DELETE FROM TBL" for Hibernate yet
doing an Extent followed by delete each object individually for a JDO implementation. This is an
unfair comparison and in the source tree in JPOX SVN this is corrected. This fix was pointed out
to the PolePos SourceForge project but is not, as yet, fixed

• It is essential that schema is generated before the test, otherwise the test is no longer a
benchmark of just a persistence operation. The source tree in JPOX SVN assumes the schema
exists. This fix was pointed out to the PolePos SourceForge project but is not, as yet, fixed

• Each persistence implementation should have its own tuning options, and be able to add things
like discriminators since that is what would happen in a real application. The source tree in
JPOX SVN does this for JPOX running. Similarly a JDO implementation would tune the entity
graphs being used - this is not present in the SourceForge project but is in JPOX SVN.

• DataNucleus performance is considered to be significantly improved over JPOX particularly due
to batched inserts, and due to a rewritten query implementation that does enhanced fetching.

112

http://vimeo.com/44789644
http://s3-eu-west-1.amazonaws.com/presentations2012/50_presentation.pdf
http://www.polepos.org

Replication

Many applications make use of multiple datastores. It is a common requirement to be able to
replicate parts of one datastore in another datastore. Obviously, depending on the datastore, you
could make use of the datastores own capabilities for replication. DataNucleus provides its own
extension to JPA to allow replication from one datastore to another. This extension doesn’t restrict
you to using 2 datastores of the same type. You could replicate from RDBMS to XML for example, or
from MySQL to HSQLDB.

You need to make sure you have the persistence property datanucleus.attachSameDatastore
set to false if using replication

Note that the case of replication between two RDBMS of the same type is usually way more
efficiently replicated using the capabilities of the datastore itself

The following sample code will replicate all objects of type Product and Employee from EMF1 to
EMF2. These EMFs are created in the normal way so, as mentioned above, EMF1 could be for a
MySQL datastore, and EMF2 for XML. By default this will replicate the complete object graphs
reachable from these specified types.

import org.datanucleus.api.jpa.JPAReplicationManager;

...

JPAReplicationManager replicator = new JPAReplicationManager(emf1, emf2);
replicator.replicate(new Class[]{Product.class, Employee.class});

113

Monitoring
DataNucleus allows a user to enable various MBeans internally. These can then be used for
monitoring the number of datastore calls etc.

Via API
The simplest way to monitor DataNucleus is to use its API for monitoring. Internally there are
several MBeans (as used by JMX) and you can navigate to these to get the required information. To
enable this set the persistence property datanucleus.enableStatistics to true. There are then two
sets of statistics; one for the EMF and one for each EM. You access these as follows

JPAEntityManagerFactory dnEMF = (JPAEntityManagerFactory)emf;
FactoryStatistics stats = dnEMF.getNucleusContext().getStatistics();
... (access the statistics information)

JPAEntityManager dnEM = (JPAEntityManager)em;
ManagerStatistics stats = dnEM.getExecutionContext().getStatistics();
... (access the statistics information)

Using JMX
The MBeans used by DataNucleus can be accessed via JMX at runtime. More about JMX here.

An MBean server is bundled with Sun/Oracle JRE since version 1.5, and you can easily activate
DataNucleus MBeans registration by creating your EMF with the persistence property
datanucleus.jmxType as default

Additionally, setting a few system properties are necessary for configuring the Sun JMX
implementation. The minimum properties required are the following:

• com.sun.management.jmxremote

• com.sun.management.jmxremote.authenticate

• com.sun.management.jmxremote.ssl

• com.sun.management.jmxremote.port=<port number>

Usage example:

java -cp TheClassPathInHere
 -Dcom.sun.management.jmxremote
 -Dcom.sun.management.jmxremote.authenticate=false
 -Dcom.sun.management.jmxremote.ssl=false
 -Dcom.sun.management.jmxremote.port=8001
 TheMainClassInHere

114

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

Once you start your application and DataNucleus is initialized you can browse DataNucleus
MBeans using a tool called jconsole (jconsole is distributed with the Sun JDK) via the URL:

service:jmx:rmi:///jndi/rmi://hostName:portNum/jmxrmi

Note that the mode of usage is presented in this document as matter of example, and by no means
we recommend to disable authentication and secured communication channels. Further details on
the Sun JMX implementation and how to configure it properly can be found here.

DataNucleus MBeans are registered in a MBean Server when DataNucleus is started up (e.g. upon
JPA EMF instantiation). To see the full list of DataNucleus MBeans, refer to the javadocs.

To enable management using MX4J you must specify the persistence property
datanucleus.jmxType as mx4j when creating the EMF, and have the mx4j and mx4j-tools jars in the
CLASSPATH.

115

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://www.datanucleus.org/javadocs/core/latest/org/datanucleus/management/runtime/package-summary.html

DataNucleus Logging
DataNucleus can be configured to log significant amounts of information regarding its process. This
information can be very useful in tracking the persistence process, and particularly if you have
problems. DataNucleus will log as follows :-

• Log4J - if you have Log4J in the CLASSPATH, Apache Log4J will be used

• java.util.logging - if you don’t have Log4J in the CLASSPATH, then java.util.logging will be used

DataNucleus logs messages to various categories (in Log4J and java.util.logging these correspond to
a "Logger"), allowing you to filter the logged messages by these categories - so if you are only
interested in a particular category you can effectively turn the others off. DataNucleus’s log is
written by default in English. If your JRE is running in a Spanish locale then your log will be written
in Spanish.

If you have time to translate our log messages into other languages, please contact one of the
developers via Groups.IO or Gitter

Logging Categories
DataNucleus uses a series of categories, and logs all messages to these categories. Currently
DataNucleus uses the following

• DataNucleus.Persistence - All messages relating to the persistence process

• DataNucleus.Transaction - All messages relating to transactions

• DataNucleus.Connection - All messages relating to Connections.

• DataNucleus.Query - All messages relating to queries

• DataNucleus.Cache - All messages relating to the DataNucleus Cache

• DataNucleus.MetaData - All messages relating to MetaData

• DataNucleus.Datastore - All general datastore messages

• DataNucleus.Datastore.Schema - All schema related datastore log messages

• DataNucleus.Datastore.Persist - All datastore persistence messages

• DataNucleus.Datastore.Retrieve - All datastore retrieval messages

• DataNucleus.Datastore.Native - Log of all 'native' statements sent to the datastore

• DataNucleus.General - All general operational messages

• DataNucleus.Lifecycle - All messages relating to object lifecycle changes

• DataNucleus.ValueGeneration - All messages relating to value generation

• DataNucleus.Enhancer - All messages from the DataNucleus Enhancer.

• DataNucleus.SchemaTool - All messages from DataNucleus SchemaTool

• DataNucleus.JDO - All messages general to JDO

• DataNucleus.JPA - All messages general to JPA

116

http://jakarta.apache.org/log4j
https://groups.io/g/datanucleus/
https://gitter.im/datanucleus/Lobby

• DataNucleus.JCA - All messages relating to Connector JCA.

• DataNucleus.IDE - Messages from the DataNucleus IDE.

Using Log4J
Log4J allows logging messages at various severity levels. The levels used by Log4J, and by
DataNucleus’s use of Log4J are DEBUG, INFO, WARN, ERROR, FATAL. Each message is logged at a
particular level to a category (as described above). The other setting is OFF which turns off a
logging category; very useful in a production situation where maximum performance is required.

To enable the DataNucleus log, you need to provide a Log4J configuration file when starting up
your application. This may be done for you if you are running within a JavaEE application server
(check your manual for details). If you are starting your application yourself, you would set a JVM
parameter as

-Dlog4j.configuration=file:log4j.properties

where log4j.properties is the name of your Log4J configuration file. Please note the file: prefix to
the file since a URL is expected.

The Log4J configuration file is very simple in nature, and you typically define where the log goes to
(e.g to a file), and which logging level messages you want to see. Here’s an example

Define the destination and format of our logging
log4j.appender.A1=org.apache.log4j.FileAppender
log4j.appender.A1.File=datanucleus.log
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d{HH:mm:ss,SSS} (%t) %-5p [%c] - %m%n

DataNucleus Categories
log4j.category.DataNucleus.JDO=INFO, A1
log4j.category.DataNucleus.Cache=INFO, A1
log4j.category.DataNucleus.MetaData=INFO, A1
log4j.category.DataNucleus.General=INFO, A1
log4j.category.DataNucleus.Transaction=INFO, A1
log4j.category.DataNucleus.Datastore=DEBUG, A1
log4j.category.DataNucleus.ValueGeneration=DEBUG, A1

log4j.category.DataNucleus.Enhancer=INFO, A1
log4j.category.DataNucleus.SchemaTool=INFO, A1

In this example, I am directing my log to a file (datanucleus.log). I have defined a particular
"pattern" for the messages that appear in the log (to contain the date, level, category, and the
message itself). In addition I have assigned a level "threshold" for each of the DataNucleus
categories. So in this case I want to see all messages down to DEBUG level for the DataNucleus
RDBMS persister.

117

Turning OFF the logging, or at least down to ERROR level provides a significant
improvement in performance. With Log4J you do this via

log4j.category.DataNucleus=OFF

Using java.util.logging
java.util.logging allows logging messages at various severity levels. The levels used by
java.util.logging, and by DataNucleus’s internally are fine, info, warn, severe. Each message is
logged at a particular level to a category (as described above).

By default, the java.util.logging configuration is taken from a properties file
<JRE_DIRECTORY>/lib/logging.properties. Modify this file and configure the categories to be logged,
or use the java.util.logging.config.file system property to specify a properties file (in
java.util.Properties format) where the logging configuration will be read from. Here is an example:

handlers=java.util.logging.FileHandler, java.util.logging.ConsoleHandler
DataNucleus.General.level=fine
DataNucleus.JDO.level=fine

--- ConsoleHandler ---
Override of global logging level
java.util.logging.ConsoleHandler.level=SEVERE
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

--- FileHandler ---
Override of global logging level
java.util.logging.FileHandler.level=SEVERE

Naming style for the output file:
java.util.logging.FileHandler.pattern=datanucleus.log

Limiting size of output file in bytes:
java.util.logging.FileHandler.limit=50000

Number of output files to cycle through, by appending an
integer to the base file name:
java.util.logging.FileHandler.count=1

Style of output (Simple or XML):
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter

Please read the javadocs for java.util.logging for additional details on its configuration.

118

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/LogManager.html

Sample Log Output
Here is a sample of the type of information you may see in the DataNucleus log when using Log4J.

21:26:09,000 (main) INFO DataNucleus.Datastore.Schema - Adapter initialised :
MySQLAdapter, MySQL version 4.0.11
21:26:09,365 (main) INFO DataNucleus.Datastore.Schema - Creating table
null.DELETE_ME1080077169045
21:26:09,370 (main) DEBUG DataNucleus.Datastore.Schema - CREATE TABLE
DELETE_ME1080077169045
(
 UNUSED INTEGER NOT NULL
) TYPE=INNODB
21:26:09,375 (main) DEBUG DataNucleus.Datastore.Schema - Execution Time = 3 ms
21:26:09,388 (main) WARN DataNucleus.Datastore.Schema - Schema Name could not be
determined for this datastore
21:26:09,388 (main) INFO DataNucleus.Datastore.Schema - Dropping table
null.DELETE_ME1080077169045
21:26:09,388 (main) DEBUG DataNucleus.Datastore.Schema - DROP TABLE
DELETE_ME1080077169045
21:26:09,392 (main) DEBUG DataNucleus.Datastore.Schema - Execution Time = 3 ms
21:26:09,392 (main) INFO DataNucleus.Datastore.Schema - Initialising Schema "" using
"SchemaTable" auto-start
21:26:09,401 (main) DEBUG DataNucleus.Datastore.Schema - Retrieving type for table
DataNucleus_TABLES
21:26:09,406 (main) INFO DataNucleus.Datastore.Schema - Creating table
null.DataNucleus_TABLES
21:26:09,406 (main) DEBUG DataNucleus.Datastore.Schema - CREATE TABLE
DataNucleus_TABLES
(
 CLASS_NAME VARCHAR (128) NOT NULL UNIQUE ,
 `TABLE_NAME` VARCHAR (127) NOT NULL UNIQUE
) TYPE=INNODB
21:26:09,416 (main) DEBUG DataNucleus.Datastore.Schema - Execution Time = 10 ms
21:26:09,417 (main) DEBUG DataNucleus.Datastore - Retrieving type for table
DataNucleus_TABLES
21:26:09,418 (main) DEBUG DataNucleus.Datastore - Validating table :
null.DataNucleus_TABLES
21:26:09,425 (main) DEBUG DataNucleus.Datastore - Execution Time = 7 ms

So you see the time of the log message, the level of the message (DEBUG, INFO, etc), the category
(DataNucleus.Datastore, etc), and the message itself. For example, if I had set the
DataNucleus.Datastore.Schema to DEBUG and all other categories to INFO I would see all DDL
statements sent to the database and very little else.

HOWTO : Log with log4j and DataNucleus under OSGi
This guide was provided by Marco Lopes, when using DataNucleus v2.2. All of the bundles which use

119

log4j should have org.apache.log4j in their Import-Package attribute! (use:
org.apache.log4j;resolution:=optional if you don’t want to be stuck with log4j whenever you use an
edited bundle in your project!).

Method 1

• Create a new "Fragment Project". Call it whatever you want (ex: log4j-fragment)

• You have to define a "Plugin-ID", that’s the plugin where DN will run

• Edit the MANIFEST

• Under RUNTIME add log4j JAR to the Classpath

• Under Export-Packages add org.apache.log4j

• Save MANIFEST

• PASTE the log4j PROPERTIES file into the SRC FOLDER of the Project

Method 2

• Get an "OSGI Compliant" log4j bundle (you can get it from the SpringSource Enterprise Bundle
Repository

• Open the Bundle JAR with WINRAR (others might work)

• PASTE the log4j PROPERTIES file into the ROOT of the bundle

• Exit. Winrar will ask to UPDATE the JAR. Say YES.

• Add the updated OSGI compliant Log4j bundle to your Plugin Project Dependencies (Required-
Plugins)

Each method has it’s own advantages. Use method 1 if you need to EDIT the log4j properties file ON-
THE-RUN. The disadvantage: it can only "target" one project at a time (but very easy to edit the
MANIFEST and select a new Host Plugin!). Use method 2 if you want to have log4j support in every
project with only one file. The disadvantage: it’s not very practical to edit the log4j PROPERTIES file
(not because of the bundle EDIT, but because you have to restart eclipse in order for the new
bundle to be recognized).

120

http://ebr.springsource.com/repository/app/
http://ebr.springsource.com/repository/app/

	JPA Persistence Guide (v5.1)
	Table of Contents
	EntityManagerFactory
	Create an EMF in JavaSE
	Create an EMF in JavaEE
	Persistence Unit
	EntityManagerFactory Properties
	Closing EntityManagerFactory
	Level 2 Cache

	Datastore Schema
	Schema Generation for persistence-unit
	Schema Auto-Generation at runtime
	Schema Generation : Validation
	Schema Generation : Naming Issues
	Schema Generation : Column Ordering
	Schema : Read-Only
	SchemaTool
	Schema Adaption
	RDBMS : Datastore Schema SPI

	EntityManager
	Opening/Closing an EntityManager
	Persisting an Object
	Persisting multiple Objects in one call
	Finding an object by its identity
	Finding an object by its class and unique key field value(s)
	Deleting an Object
	Deleting multiple Objects
	Modifying a persisted Object
	Modifying multiple persisted Objects
	Refreshing a persisted Object
	Getting EntityManager for an object
	Cascading Operations
	Orphans
	Managing Relationships
	Transactions with lots of data
	Level 1 Cache

	Object Lifecycle
	Transaction PersistenceContext
	Extended PersistenceContext
	Detachment
	Helper Methods

	Transactions
	Locally-Managed Transactions
	JTA Transactions
	Container-Managed Transactions
	Spring-Managed Transactions
	No Transactions
	Transaction Isolation
	Read-Only Transactions
	Flushing
	Transaction Savepoints

	Locking
	Optimistic Locking
	Pessimistic (Datastore) Locking

	Datastore Connections
	Transactional Context
	Nontransactional Context
	User Connection
	Connection Pooling
	Data Sources

	Multitenancy
	Multitenancy via Discriminator in Table

	Bean Validation
	Entity Graphs
	Default Entity Graph
	Named Entity Graphs
	Unnamed Entity Graphs

	Lifecycle Callbacks
	Entity Callbacks
	Entity Listener

	JavaEE Environments
	JBoss AS7
	TomEE

	OSGi Environments
	JPA and OSGi
	Sample using OSGi and JPA
	LocalContainerEntityManagerFactoryBean class for use in Virgo 3.0 OSGi environment

	Performance Tuning
	Enhancement
	Schema
	EntityManagerFactory usage
	EntityManager usage
	Persistence Process
	Database Connection Pooling
	Retrieval of object by identity
	Value Generators
	Collection/Map caching
	NonTransactional Reads (Reading persistent objects outside a transaction)
	Accessing fields of persistent objects when not managed by a EntityManager
	Fetch Control
	Logging
	General Comments

	Replication
	Monitoring
	Via API
	Using JMX

	DataNucleus Logging
	Logging Categories
	Using Log4J
	Using java.util.logging
	Sample Log Output
	HOWTO : Log with log4j and DataNucleus under OSGi

